
Game ‘AI’ Part 2 Pathfinding
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Admin

● Quiz

● Class Evals

● Project
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Path Planning

● when you have “bad guys”

● need to find your players.
●

● find a path from here to them

● how?
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Path Planning

● when you have “bad guys”

● need to find your players.
●

● find a path from here to them

● how?
● particularly for tiled 2d games?

● graph search!!
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Brute Force Techniques

● Some games might use brute force

● depth first
● breadth first

● Some might use heuristic algorithm like A*
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Setting up the graph

● Very important to setup graph well in your game

● best search in the world won't help AI chars who have lousy 
graphs.

● trade offs and design decisions
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Common Setup: Visibility Graph

● VGraph common for games as well as robotics



  9

Alternative: Expand Geometry

● Expanded/dilated geometry

● more useful for geometry than tile based games
● dilate by at least size of NPC
● build vgraph from 

result
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NavMesh 

● Nav Mesh approach

● good for 3d
● npcs can wander freely within area

● travel from area to area along 
prescribed boundaries

●

● efficient 
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Course Granulation for graphs
● Coarsely Granulated graphs

● only a few nodes

● setup by hand

● advantages

● very space efficient
● very easy to search

● disadvantages

● potential for blind spots (p 338)
● hard to use in free movement games
● leads to unsightly zigzag paths
● developer time required.

● What sorts of game(s) is ideal for this sort of graph?
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Course grained graph poster child
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Finely Grained Graphs

● Finely grained graphs 
alternative to course grained

● pict from page 339
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Finely Grained Graphs

● Finely grained graphs

● advantages
● much smoother motion
● no blind spots
● ideal for tile based layouts.

● disadvantages
● larger memory
● larger search times

– Though with modern machines this is less of an issue
– Still *lots* faster than LLM style AI
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Creating finely Grained graphs

● use flood fill algorithm

● start with seed point
● expand node/edges outward 

in all available directions
● continue from graph edges
● till navigable space full
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Lets try it

● First we need to represent the map as a 2d array

● For walls and floors we just need to mark the 
impassable layer in the array and leave the 
rest as default

● How will we make a ‘2d array’ in ebitengine?



  17

Lets try it

● First we need to represent the map as a 2d array

● For walls and floors we just need to mark the 
impassable layer in the array and leave the 
rest as default

● How will we make a ‘2d array’ in ebitengine?
● maybe a slice of slices,

● But go-tiled just unrolled it into a single long 
slice
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Now Flood Fill

● Once you have the map as an array

● Lets look at zombies and cats.

● http://inventwithpython.com/blog/2011/08/11/recursion-explaine
d-with-the-flood-fill-algorithm-and-zombies-and-cats/

● Look at their super simple flood fill

● We need to make sure we don’t go off the edge of the map.
● But otherwise our solution will be similar

● Once you have the graph, you are ready to graph search. 

http://inventwithpython.com/blog/2011/08/11/recursion-explained-with-the-flood-fill-algorithm-and-zombies-and-cats/
http://inventwithpython.com/blog/2011/08/11/recursion-explained-with-the-flood-fill-algorithm-and-zombies-and-cats/
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Items and Graphs

● not just places, but items on graphs

● items players can pick up
● or AI npcs as well.
● make your AI look smarter

● put items on paths AI chars travel most
● player travel or not.
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How can we build our graph?

● We need to build a graph with flood fill, then do a graph search to 
find a path.

● When I did this with python students had to implement recursive 
flood fill.

● And of course all of you completed comp250 so you know how to 
implement a depth-first or breath first search

● Maybe not A*
● If you had your 'druthers' how would you do it?
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How can we build our graph?

● We need to build a graph with flood fill, then do a graph search to 
find a path.

● When I did this with python students had to implement recursive 
flood fill.

● And of course all of you completed comp250 so you know how to 
implement a depth-first or breath first search

● Maybe not A*
● If you had your 'druthers' how would you do it?

– 'Programmers are lazy' – meaning?
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Someone else did it AKA don’t reinvent the wheel

● 'Programmers are lazy' 

● AKA don't reinvent the wheel
● The Awesome Ebitengine list on github

● https://github.com/sedyh/awesome-ebitengine
● There are two promising pathfinding libraries.

● That also build the graph.
● https://github.com/SolarLune/paths - oh look resolv creator
● https://github.com/quasilyte/pathing 

https://github.com/sedyh/awesome-ebitengine
https://github.com/SolarLune/paths
https://github.com/quasilyte/pathing
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SolarLune/paths

● First thing to know

● The readme on github is a lying liar.
● Epitome of stale comments/documentation.
● One of us should update it in a pull request

● In our spare time.
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Pathing Example

● Path example

● https://github.com/jsantore/AI_PathingDemo1
● We start out with the tiled map demo like a couple of (a few?) weeks ago

● Change a couple of names and add a few things.
● Planned final result:

● Display map
● Put a pile of coins
● Click anywhere on map, goblin appears and moves to coin pile 

without going in water or through walls

https://github.com/jsantore/AI_PathingDemo1


  25

Main
● Annotated main
● func main() {

gameMap := loadMapFromEmbedded(path.Join("assets", "MapForPaths.tmx"))
pathMap := makeSearchMap(gameMap) //this is two slides from here.
searchablePathMap := paths.NewGridFromStringArrays(pathMap, gameMap.TileWidth, gameMap.TileHeight)
searchablePathMap.SetWalkable('2', false) //sets the water tiles as not passable
searchablePathMap.SetWalkable('3', false) //sets the wall tiles as not passable
coins := makeCoinPile() //these two are on next slide
nonPlayer := makeNPC() //these two are on next slide
ebiten.SetWindowSize(gameMap.TileWidth*gameMap.Width, gameMap.TileHeight*gameMap.Height)
ebiten.SetWindowTitle("Maps Embedded")
ebitenImageMap := makeEbitenImagesFromMap(*gameMap)
oneLevelGame := PathMapDemo{
Level:          gameMap,
tileHash:       ebitenImageMap,
pathFindingMap: pathMap,
coins:          coins,
npc:            nonPlayer,
pathMap:        searchablePathMap,
}
err := ebiten.RunGame(&oneLevelGame)
if err != nil {
fmt.Println("Couldn't run game:", err)
}

}
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Creating coins and goblin

●

● func makeNPC() NonPlayerChar {
picture := LoadEmbeddedImage("", 

"goblin.png")
character := NonPlayerChar{

pict: picture,
xloc: -100, //put the NPC off screen 

originally
yloc: -100,

}
return character

}

● func makeCoinPile() coinPile {
picture := LoadEmbeddedImage("", 

"coins.png")
money := coinPile{

pict:   picture,
row:    12,
column: 10,

}
return money

}

A lot like making the entities earlier – anything look out of place?
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Make the search map
● In this one we iterate through the map and build the slice of strings 

representation the path library wants
● func makeSearchMap(tiledMap *tiled.Map) []string {

mapAsStringSlice := make([]string, 0, tiledMap.Height) //each row will be its own string
row := strings.Builder{}
for position, tile := range tiledMap.Layers[0].Tiles {

   if position%tiledMap.Width == 0 && position > 0 { // we get the 2d array as an unrolled one-d 
array

  mapAsStringSlice = append(mapAsStringSlice, row.String())
   row = strings.Builder{}

   }
   row.WriteString(fmt.Sprintf("%d", tile.ID))

}
mapAsStringSlice = append(mapAsStringSlice, row.String())
return mapAsStringSlice

}  //questions??

● strings.Builder is the efficient way to build a string from parts
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Draw
● func (demo PathMapDemo) Draw(screen *ebiten.Image) {

drawOptions := ebiten.DrawImageOptions{}
//draw map
<snipped for slide – same as tiled map version>
//draw gold
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(float64(demo.coins.column*demo.Level.TileWidth),    

                                                                   float64(demo.coins.row*demo.Level.TileHeight))
screen.DrawImage(demo.coins.pict, &drawOptions)
//draw goblin
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(demo.npc.xloc, demo.npc.yloc)
screen.DrawImage(demo.npc.pict, &drawOptions)

}

● Fairly standard draw – first map, now two objects, the goblin and the gold, 
goblin starts off screen

●
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Check mouse
● New function checkmouse will 

● move the goblin to a mouseclick 
● and then ask path to plot path from goblin to gold

● func checkMouse(demo *PathMapDemo) {
if inpututil.IsMouseButtonJustPressed(ebiten.MouseButtonLeft) {

mouseX, mouseY := ebiten.CursorPosition()
demo.npc.xloc = float64(mouseX) //move the goblin to mouse loc
demo.npc.yloc = float64(mouseY) //upper left of goblin
startRow := int(demo.npc.yloc) / demo.Level.TileHeight
startCol := int(demo.npc.xloc) / demo.Level.TileWidth
startCell := demo.pathMap.Get(startCol, startRow)//start path from goblin's tile
endCell := demo.pathMap.Get(demo.coins.column, demo.coins.row)
demo.path = demo.pathMap.GetPathFromCells(startCell, endCell, false, false)

}
}

● The two false arguments I’m passing to params in making the path are diagonal movement, and diagonal wall 
gaps allowed
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The update has quite a bit that is new
● func (demo *PathMapDemo) Update() error {

checkMouse(demo)
if demo.path != nil {
pathCell := demo.path.Current() //get the current tile/cell in the path
if math.Abs(float64(pathCell.X*demo.Level.TileWidth)-(demo.npc.xloc)) <= 2 &&
math.Abs(float64(pathCell.Y*demo.Level.TileHeight)-(demo.npc.yloc)) <= 2 { //if we are now on the tile we need to be on
demo.path.Advance() //make the current tile the next one in the path
}
direction := 0.0 //find the X direction to move to make upper left of goblin closer to upper left of tile
if pathCell.X*demo.Level.TileWidth > int(demo.npc.xloc) {
direction = 1.0
} else if pathCell.X*demo.Level.TileWidth < int(demo.npc.xloc) {
direction = -1.0
}
Ydirection := 0.0 //find Y direction to move to make upper left of goblin closer to upper left of tile
if pathCell.Y*demo.Level.TileHeight > int(demo.npc.yloc) {
Ydirection = 1.0
} else if pathCell.Y*demo.Level.TileHeight < int(demo.npc.yloc) {
Ydirection = -1.0
}
demo.npc.xloc += direction * 2  //move toward upper left of current tile
demo.npc.yloc += Ydirection * 2
}
return nil

}
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Let’s Try it (again?)

● And see how it works.

● Note that the library will do A*, you have to assign a cost for tiles in 
MakeSearchMap

● I didn't since only my sand tile is passable.
●
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Reading/Watching/Learning

● A few bits of reading/watching for those who want to know how the 
library is implemented.

● A tutorial from gamedeveloper
● https://www.gamedeveloper.com/programming/toward-more-realis

tic-pathfinding
● An older book chapter
● https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context

=itbj
●  A video (I'll admit, I've only watched part of it – I've done it too 

much to watch all 12 minutes.
● https://www.youtube.com/watch?v=i0x5fj4PqP4 

https://www.gamedeveloper.com/programming/toward-more-realistic-pathfinding
https://www.gamedeveloper.com/programming/toward-more-realistic-pathfinding
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context=itbj
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context=itbj
https://www.youtube.com/watch?v=i0x5fj4PqP4
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