
Game ‘AI’ Part 2 Pathfinding

 2

Admin

● Quiz

● Class Evals

● Project

 3

Path Planning

● when you have “bad guys”

● need to find your players.
●

● find a path from here to them

● how?

 4

Path Planning

● when you have “bad guys”

● need to find your players.
●

● find a path from here to them

● how?
● particularly for tiled 2d games?

 5

Path Planning

● when you have “bad guys”

● need to find your players.
●

● find a path from here to them

● how?
● particularly for tiled 2d games?

● graph search!!

 6

Brute Force Techniques

● Some games might use brute force

● depth first
● breadth first

● Some might use heuristic algorithm like A*

 7

Setting up the graph

● Very important to setup graph well in your game

● best search in the world won't help AI chars who have lousy
graphs.

● trade offs and design decisions

 8

Common Setup: Visibility Graph

● VGraph common for games as well as robotics

 9

Alternative: Expand Geometry

● Expanded/dilated geometry

● more useful for geometry than tile based games
● dilate by at least size of NPC
● build vgraph from

result

 10

NavMesh

● Nav Mesh approach

● good for 3d
● npcs can wander freely within area

● travel from area to area along
prescribed boundaries

●

● efficient

 11

Course Granulation for graphs
● Coarsely Granulated graphs

● only a few nodes

● setup by hand

● advantages

● very space efficient
● very easy to search

● disadvantages

● potential for blind spots (p 338)
● hard to use in free movement games
● leads to unsightly zigzag paths
● developer time required.

● What sorts of game(s) is ideal for this sort of graph?

 12

Course grained graph poster child

 13

Finely Grained Graphs

● Finely grained graphs
alternative to course grained

● pict from page 339

 14

Finely Grained Graphs

● Finely grained graphs

● advantages
● much smoother motion
● no blind spots
● ideal for tile based layouts.

● disadvantages
● larger memory
● larger search times

– Though with modern machines this is less of an issue
– Still *lots* faster than LLM style AI

 15

Creating finely Grained graphs

● use flood fill algorithm

● start with seed point
● expand node/edges outward

in all available directions
● continue from graph edges
● till navigable space full

 16

Lets try it

● First we need to represent the map as a 2d array

● For walls and floors we just need to mark the
impassable layer in the array and leave the
rest as default

● How will we make a ‘2d array’ in ebitengine?

 17

Lets try it

● First we need to represent the map as a 2d array

● For walls and floors we just need to mark the
impassable layer in the array and leave the
rest as default

● How will we make a ‘2d array’ in ebitengine?
● maybe a slice of slices,

● But go-tiled just unrolled it into a single long
slice

 18

Now Flood Fill

● Once you have the map as an array

● Lets look at zombies and cats.

● http://inventwithpython.com/blog/2011/08/11/recursion-explaine
d-with-the-flood-fill-algorithm-and-zombies-and-cats/

● Look at their super simple flood fill

● We need to make sure we don’t go off the edge of the map.
● But otherwise our solution will be similar

● Once you have the graph, you are ready to graph search.

http://inventwithpython.com/blog/2011/08/11/recursion-explained-with-the-flood-fill-algorithm-and-zombies-and-cats/
http://inventwithpython.com/blog/2011/08/11/recursion-explained-with-the-flood-fill-algorithm-and-zombies-and-cats/

 19

Items and Graphs

● not just places, but items on graphs

● items players can pick up
● or AI npcs as well.
● make your AI look smarter

● put items on paths AI chars travel most
● player travel or not.

 20

How can we build our graph?

● We need to build a graph with flood fill, then do a graph search to
find a path.

● When I did this with python students had to implement recursive
flood fill.

● And of course all of you completed comp250 so you know how to
implement a depth-first or breath first search

● Maybe not A*
● If you had your 'druthers' how would you do it?

 21

How can we build our graph?

● We need to build a graph with flood fill, then do a graph search to
find a path.

● When I did this with python students had to implement recursive
flood fill.

● And of course all of you completed comp250 so you know how to
implement a depth-first or breath first search

● Maybe not A*
● If you had your 'druthers' how would you do it?

– 'Programmers are lazy' – meaning?

 22

Someone else did it AKA don’t reinvent the wheel

● 'Programmers are lazy'

● AKA don't reinvent the wheel
● The Awesome Ebitengine list on github

● https://github.com/sedyh/awesome-ebitengine
● There are two promising pathfinding libraries.

● That also build the graph.
● https://github.com/SolarLune/paths - oh look resolv creator
● https://github.com/quasilyte/pathing

https://github.com/sedyh/awesome-ebitengine
https://github.com/SolarLune/paths
https://github.com/quasilyte/pathing

 23

SolarLune/paths

● First thing to know

● The readme on github is a lying liar.
● Epitome of stale comments/documentation.
● One of us should update it in a pull request

● In our spare time.

 24

Pathing Example

● Path example

● https://github.com/jsantore/AI_PathingDemo1
● We start out with the tiled map demo like a couple of (a few?) weeks ago

● Change a couple of names and add a few things.
● Planned final result:

● Display map
● Put a pile of coins
● Click anywhere on map, goblin appears and moves to coin pile

without going in water or through walls

https://github.com/jsantore/AI_PathingDemo1

 25

Main
● Annotated main
● func main() {

gameMap := loadMapFromEmbedded(path.Join("assets", "MapForPaths.tmx"))
pathMap := makeSearchMap(gameMap) //this is two slides from here.
searchablePathMap := paths.NewGridFromStringArrays(pathMap, gameMap.TileWidth, gameMap.TileHeight)
searchablePathMap.SetWalkable('2', false) //sets the water tiles as not passable
searchablePathMap.SetWalkable('3', false) //sets the wall tiles as not passable
coins := makeCoinPile() //these two are on next slide
nonPlayer := makeNPC() //these two are on next slide
ebiten.SetWindowSize(gameMap.TileWidth*gameMap.Width, gameMap.TileHeight*gameMap.Height)
ebiten.SetWindowTitle("Maps Embedded")
ebitenImageMap := makeEbitenImagesFromMap(*gameMap)
oneLevelGame := PathMapDemo{
Level: gameMap,
tileHash: ebitenImageMap,
pathFindingMap: pathMap,
coins: coins,
npc: nonPlayer,
pathMap: searchablePathMap,
}
err := ebiten.RunGame(&oneLevelGame)
if err != nil {
fmt.Println("Couldn't run game:", err)
}

}

 26

Creating coins and goblin

●

● func makeNPC() NonPlayerChar {
picture := LoadEmbeddedImage("",

"goblin.png")
character := NonPlayerChar{

pict: picture,
xloc: -100, //put the NPC off screen

originally
yloc: -100,

}
return character

}

● func makeCoinPile() coinPile {
picture := LoadEmbeddedImage("",

"coins.png")
money := coinPile{

pict: picture,
row: 12,
column: 10,

}
return money

}

A lot like making the entities earlier – anything look out of place?

 27

Make the search map
● In this one we iterate through the map and build the slice of strings

representation the path library wants
● func makeSearchMap(tiledMap *tiled.Map) []string {

mapAsStringSlice := make([]string, 0, tiledMap.Height) //each row will be its own string
row := strings.Builder{}
for position, tile := range tiledMap.Layers[0].Tiles {

 if position%tiledMap.Width == 0 && position > 0 { // we get the 2d array as an unrolled one-d
array

 mapAsStringSlice = append(mapAsStringSlice, row.String())
 row = strings.Builder{}

 }
 row.WriteString(fmt.Sprintf("%d", tile.ID))

}
mapAsStringSlice = append(mapAsStringSlice, row.String())
return mapAsStringSlice

} //questions??

● strings.Builder is the efficient way to build a string from parts

 28

Draw
● func (demo PathMapDemo) Draw(screen *ebiten.Image) {

drawOptions := ebiten.DrawImageOptions{}
//draw map
<snipped for slide – same as tiled map version>
//draw gold
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(float64(demo.coins.column*demo.Level.TileWidth),

 float64(demo.coins.row*demo.Level.TileHeight))
screen.DrawImage(demo.coins.pict, &drawOptions)
//draw goblin
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(demo.npc.xloc, demo.npc.yloc)
screen.DrawImage(demo.npc.pict, &drawOptions)

}

● Fairly standard draw – first map, now two objects, the goblin and the gold,
goblin starts off screen

●

 29

Check mouse
● New function checkmouse will

● move the goblin to a mouseclick
● and then ask path to plot path from goblin to gold

● func checkMouse(demo *PathMapDemo) {
if inpututil.IsMouseButtonJustPressed(ebiten.MouseButtonLeft) {

mouseX, mouseY := ebiten.CursorPosition()
demo.npc.xloc = float64(mouseX) //move the goblin to mouse loc
demo.npc.yloc = float64(mouseY) //upper left of goblin
startRow := int(demo.npc.yloc) / demo.Level.TileHeight
startCol := int(demo.npc.xloc) / demo.Level.TileWidth
startCell := demo.pathMap.Get(startCol, startRow)//start path from goblin's tile
endCell := demo.pathMap.Get(demo.coins.column, demo.coins.row)
demo.path = demo.pathMap.GetPathFromCells(startCell, endCell, false, false)

}
}

● The two false arguments I’m passing to params in making the path are diagonal movement, and diagonal wall
gaps allowed

 30

The update has quite a bit that is new
● func (demo *PathMapDemo) Update() error {

checkMouse(demo)
if demo.path != nil {
pathCell := demo.path.Current() //get the current tile/cell in the path
if math.Abs(float64(pathCell.X*demo.Level.TileWidth)-(demo.npc.xloc)) <= 2 &&
math.Abs(float64(pathCell.Y*demo.Level.TileHeight)-(demo.npc.yloc)) <= 2 { //if we are now on the tile we need to be on
demo.path.Advance() //make the current tile the next one in the path
}
direction := 0.0 //find the X direction to move to make upper left of goblin closer to upper left of tile
if pathCell.X*demo.Level.TileWidth > int(demo.npc.xloc) {
direction = 1.0
} else if pathCell.X*demo.Level.TileWidth < int(demo.npc.xloc) {
direction = -1.0
}
Ydirection := 0.0 //find Y direction to move to make upper left of goblin closer to upper left of tile
if pathCell.Y*demo.Level.TileHeight > int(demo.npc.yloc) {
Ydirection = 1.0
} else if pathCell.Y*demo.Level.TileHeight < int(demo.npc.yloc) {
Ydirection = -1.0
}
demo.npc.xloc += direction * 2 //move toward upper left of current tile
demo.npc.yloc += Ydirection * 2
}
return nil

}

 31

Let’s Try it (again?)

● And see how it works.

● Note that the library will do A*, you have to assign a cost for tiles in
MakeSearchMap

● I didn't since only my sand tile is passable.
●

 32

Reading/Watching/Learning

● A few bits of reading/watching for those who want to know how the
library is implemented.

● A tutorial from gamedeveloper
● https://www.gamedeveloper.com/programming/toward-more-realis

tic-pathfinding
● An older book chapter
● https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context

=itbj
● A video (I'll admit, I've only watched part of it – I've done it too

much to watch all 12 minutes.
● https://www.youtube.com/watch?v=i0x5fj4PqP4

https://www.gamedeveloper.com/programming/toward-more-realistic-pathfinding
https://www.gamedeveloper.com/programming/toward-more-realistic-pathfinding
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context=itbj
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1063&context=itbj
https://www.youtube.com/watch?v=i0x5fj4PqP4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

