
Game AI Part 1

 2

Admin

● Schedule and Quizzes
● Questions?

 3

Game AI vs AI

● Game AI often not real AI

● Real AI art of “making computers do things only people are good
at”

● Self defeating definition
● Lots of processing power /computation
● Overkill for most games
● exceptions?

 4

Game AI vs AI
● Most of the “AI” in games not really Intelligence at all

● Artificial Stupidity

● Don't want an intelligent opponent

● Would cause difficulty level issues
● Want one just good enough.

● Games full of AlphaStar or Pluribus would be no fun to play

● https://builtin.com/artificial-intelligence/lessons-ai-games
● Even Dark souls III changed death to be less punishing than Dark Souls II (no

more shrinking health bar)

● Elden Ring?
– LLMs? Or even Small Language Models?

https://builtin.com/artificial-intelligence/lessons-ai-games

 5

So what is good enough for Game AI?

● Standard programming techniques, adapted to games usually good
enough

● Most common
● Finite state automata/finite state machines
● Simple is often good enough
● Quick review of FSM for undergrads

Of course, for big strategy games, something more might be needed.

But often lots of smaller techniques are good.

 6

FSM from a game designers point of view

● simple look at FSM :

● Model of behavior of game entity
● With limited number of defined modes
● Mode transitions change with circumstance

● Examples and details to follow

 7

Example simple FSA

● Example:(pseudo code)

● if self.state == "exploring":
● self.random_heading()
● if self.can_see(player):

● self.state = 'seeking'
● elif self.state == 'seeking':

● self.head_towards('player')
● If self.in_range_of(player):

● self.fire_at(player)
● If not self.can_see(player):

● self.state = 'exploring'
● Now lets draw the diagram for this machine

 8

Elements of FSM

● Elements of FSM

● states
– which define behavior and may produce actions

● state transitions
– which are movement from one state to another

● rules or conditions
– which must be met to allow a state transition

● input events
– which are either externally or internally generated, which may possibly trigger

rules and lead to state transitions

 9

Finite State Machine for Pac Man Red Ghost

● Let’s build part of the pseudo code

 10

A slightly more complex FSM for a game entity

 11

Implementing a Finite State Machine

● States in FSM generally define 2 things

● What the game entity is doing at moment
● When the entity needs to switch to new state

● If I were to ask about this in a quiz or exam, you would want
both

● Where is that in examples so far?

 12

Advantages of FSMs for Game dev
● * simplicity: easy for inexperienced developers to implement

● * Predictability: given a set of inputs and a known current state, the state
transition can be predicted

● FSMs are quick to design, quick to implement and quick in execution

● FSM been around for a long time: well proven

● FSMs are relatively flexible: number of ways to implement

● Easy to transfer from meaningful abstract representation to code

● Low processor overhead; Only the code for the current state need be
executed,

● Easy determination of reachability of a state, when represented in an abstract
form, it is immediately obvious whether a state is achievable from another
state, and what is required to achieve the state

 13

Disadvatages of FSMs

● Disadvantages

● The predictable nature of deterministic FSMs can be undesirable
● * Larger systems implemented using a FSM can be difficult to

manage
● Not suited to all problem domains: should only be used when

● a systems behavior can be decomposed into separate
states with well defined conditions for state transitions.

● all states, transitions and conditions need to be known up
front and be well defined

 14

Non Deterministic FSM

● Some of the problems overcome by using Nondeterministic FSMs

● Brief description of NonDeterministic FSMs for undergrads
● Lets diagram non-deterministic finite state machine for game entity

 15

Implementing Non-deterministic FSA

● When more than one transition is valid

● Randomly choose between them.
● Lets write a sample

● Fu FSA

● Fuzzy FSA
● Like non-deterministic fsa except transitions are weighted

rather than random

 16

Stop here

● Flocking continues here, but go look at path planning at this point

 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

