
Camera and Game GUIs

 2

Admin

● Upcoming scheduling
– The Nov 11 bridgewater twostep
– The final exam

● Project questions?

 3

Seeing part of the game ‘world’

● In early arcade video games we could see the whole ‘world’
– Then player could see everything all at once

 4

Seeing part of the game ‘world’

● In early arcade video games we could see the whole ‘world’
– Then player could see everything all at once
– Next we had the scrolling background to give the impression of a larger world
–

 5

Camera

● Eventually most games settled on the notion of a ‘camera’ which
would show just the relevant part of the world on screen.
– For 2d games

● We might render the entire scene
● Then only draw part of it to the screen in draw
● Either using something like sub-image, or more likely just translating the large image

so we see the relevant part.

– Built in to all of the engines
– We will use a library to help us out.

 6

Camera Libarary

● https://github.com/tducasse/ebiten-
camera

● Like most of the ebiten and ebiten
adjacent projects
– Simple, extensible.
– Official readme ‘tutorial’

import camera "github.com/tducasse/ebiten-camera"

myCamera := camera.Init(screenWidth, screenHeight)
world := ebiten.NewImage(worldWidth, worldHeight)

ebiten.SetWindowSize(screenWidth*windowScale,
screenHeight*windowScale)
// in your Draw call
world.Clear()
// your draw calls go here, but target world instead of screen
player.Draw(world)
// then draw the world onto the screen
myCamera.Draw(world, screen)

https://github.com/tducasse/ebiten-camera
https://github.com/tducasse/ebiten-camera

 7

My Comments

● Annotated
– You want variables in your

game for the camera and
‘world’ that you will init in main

– Init your camera with window
size

– Then the rest is done in draw
– Let’s look as a slightly more

complete demo
– https://github.com/jsantore/Sim

pleCamera

● import camera "github.com/tducasse/ebiten-camera"
●

●

● myCamera := camera.Init(screenWidth, screenHeight)
● world := ebiten.NewImage(worldWidth, worldHeight)
● ebiten.SetWindowSize(screenWidth*windowScale,

screenHeight*windowScale)
●

● // in your Draw call
● world.Clear()
● // your draw calls go here, but target world

instead of screen
● player.Draw(world)
● // then draw the world onto the screen
● myCamera.Draw(world, screen)

https://github.com/jsantore/SimpleCamera
https://github.com/jsantore/SimpleCamera

 8

Example

//go:embed assets
var EmbeddedAssets embed.FS

type cameraDemoGame struct {
background *ebiten.Image //the background image on disk
displayedLevel *ebiten.Image //world image: background + player
cameraView *camera.Camera
player player
drawOps ebiten.DrawImageOptions

}

type player struct {
pict *ebiten.Image
x, y int

}

● Pretty standard update with
bounds

func (demo *cameraDemoGame) Update() error {
if ebiten.IsKeyPressed(ebiten.KeyLeft) && demo.player.x > 100

{
demo.player.x -= 5

} else if ebiten.IsKeyPressed(ebiten.KeyRight) &&
demo.player.x < 1800 {

demo.player.x += 5
log.Println("x is now ", demo.player.x)

}
if ebiten.IsKeyPressed(ebiten.KeyUp) && demo.player.y > 100 {

demo.player.y -= 5
} else if ebiten.IsKeyPressed(ebiten.KeyDown) &&

demo.player.y < 900 {
demo.player.y += 5

}
return nil

}

 9

Draw is where the difference is

● Draw to world, set follow, then have camera draw world sub image to
screen

func (demo *cameraDemoGame) Draw(screen *ebiten.Image) {
//draw to the world at first
//first draw background
demo.drawOps.GeoM.Reset()
demo.displayedLevel.DrawImage(demo.background, &demo.drawOps)
//next draw player
demo.drawOps.GeoM.Reset()
demo.drawOps.GeoM.Translate(float64(demo.player.x), float64(demo.player.y))
demo.displayedLevel.DrawImage(demo.player.pict, &demo.drawOps)

//now move the camera to be over the player
demo.cameraView.Follow.H = demo.player.y * 2
demo.cameraView.Follow.W = demo.player.x * 2
//finally draw to the screen
demo.cameraView.Draw(demo.displayedLevel, screen)

}

 10

Let’s see it run

● Let’s download this and run it.

 11

Interfaces

● When you have interface components,
– Use the camera for the game as seen earlier,
– Then draw the interface on the screen itself, after the camera has adjusted
– For this first pass, we will just draw a bit of text on the screen as the camera

moves around
● This is the simple camera demo with text added
● https://github.com/jsantore/CameraWithInterface

–

https://github.com/jsantore/CameraWithInterface

 12

Changes from Simple Camera
● Added a LoadFontEmbedded

– Same as the old load font from the
font demo,

– but uses EmbbeddedFS.Open
instead of os.Open

● Added to game struct
textOps text.DrawOptions
drawFont *text.GoXFace

● In main
fontFace := LoadFontEmbedded("Square-Black.ttf", 18)
drawFace := text.NewGoXFace(fontFace)

● Then used drawFace to initialize the
drawfont in the game struct

● Draw added several new lines at
the end

● Now lets see it work
//Newly adding a first pass at an interface
demo.textOps.GeoM.Reset()
demo.textOps.GeoM.Translate(50, 50) //let's start the text in the upper
left of the window
demo.textOps.ColorScale.Reset()
demo.textOps.ColorScale.ScaleWithColor(colornames.Wheat)
info := fmt.Sprintf("Player is at %d, %d", demo.player.x, demo.player.y)
text.Draw(screen, info, demo.drawFont, &demo.textOps)

 13

GUI

● What is a gui?
– The lucky volunteer program keeps on

trucking.
–

 14

GUI

● What is a gui?
– The lucky volunteer program keeps on

trucking.
– Potential Answer:

● A set of controls for allowing the user to
more easily interact with the program

 15

GUI

● What is a gui from the point of view
of the application developer?
– lucky volunteer?
–

 16

GUI

● What is a gui from the point of view
of the application developer?
– A set of components that respond to

events, and you provide those
components your functions to call
when the events happen

– Or something like this right?

 17

GUI

● What is a gui from the point of view
of the GUI library developer?
– Lucky Volunteer?
– This one is harder – since most of you

were the users of gui libraries

 18

GUI

● What is a gui from the point of view
of the GUI library developer?
– A library that draws an image at a

particular point in the screen/window
– When the component represented by

the image gains ‘focus’ then it will ask
the operating system to send all
events to it.

– Then the component will call your
handler functions when the right
events from the OS arrive.

 19

GUIs

● Windowed operating systems all provide a set of images for their GUI
controls (system native) eg Windows 11 (left) and MacOS (right)

● Image credit to Microsoft and Apple developer docs

●

●

● Other libraries provide their
own images

● But system native libraries are often desired so that users can use hard
won knowledge of how a program ‘should’ work.

 20

GUIs for Games
● Often Games want a unique look

– Don’t want our game to look like the spreadsheet we use for work.
– So often want our programs to use custom images for components.
– So we might use text entry and two sets of images for a checkbox, in the

checked and unchecked states.
–

–

– Depending on our game

 21

GUIs for games

● So how do we get these unique GUIs?
– Lucky volunteer?

 22

GUIs for games

● So how do we get these unique GUIs?
– We could build our own engine with custom GUI components
– Or?

 23

GUIs for games

● So how do we get these unique GUIs?
– We could build our own engine with custom GUI components
– Or we could use an existing engine/library which will take custom images and

use them.
● Godot and Unity both have gui components that will take a custom image.
● For ebitengine there is a related library ebitenui
● https://github.com/ebitenui/ebitenui
● This library has seen a major overhaul and a lot of improvements in the first half of the

year. (if you find my old stuff on ebitenui – it will now all be wrong/outdated).
● Docs at https://ebitenui.github.io/ for more
● Ebitenui comes with a default set of images, but allows you to use your own.

https://github.com/ebitenui/ebitenui
https://ebitenui.github.io/

 24

Arraigning GUIs

● Game guis work a lot more like old desktop UIs than modern
reactive/mobile Uis
– Usually don’t change game resolution or arraignment
– You all had to take comp152 to get here

● And Comp152 has GUI programming as a mandatory outcome
● So how are (desktop first) GUIs usually arraigned?

– How do you specify where everything goes?

 25

Arraigning GUIs

● Game guis work a lot more like old desktop UIs than modern
reactive/mobile Uis
– Usually don’t change game resolution or arraignment
– You all had to take comp152 to get here

● And Comp152 has GUI programming as a mandatory outcome
● So how are (desktop first) GUIs usually arraigned?

– How do you specify where everything goes?

● Usually there are some sort of Container with a Layout object that determines this.
● Give me some examples of Layouts you have run into?

– Lets put them on the board.

 26

Arraigning GUIs

● EbitenUI supports subset of these
layouts.
– AnchorLayout
–

–

–

–

–

– RowLayout
● Vertical
● Or horzontal

● GridLayout
●

●

●

●

●

●

● StackedLayout
– Not yet well documented

● Images all from official docs

 27

Arraigning GUIs

● To make arbitrary Uis
– Put a container with one Layout inside of another container with another

layout.
– Putting a rowLayout inside of the center pane of an anchor layout for

example

 28

Control over look, feel, behavior

● In most GUIs
– You can have a great deal of control over things like fonts and colors
– But there are defaults that are automatically selected to make it look like

every other gui on that OS

● For games
– We want it to look unique
– So ebitenui tends to make you set some values yourself.

● Eg, no default font or font color.

 29

ebitenui

● Since this is ebitenui, it is design to work with the ebiten library
– There is a draw and update in the UI object
– If you are using a camera

● Call ui.Draw after you do all of your camera drawing to the screen
– Or your UI will end up being drawn offscreen.

●

 30

Ebitenui

● The struct you have to build

ebitenui.UI
● It has one field that you have to

fill
– A container that will be the root

container of the GUI
– Remind us again what is a

container?
● Lucky volunteer

 31

Ebitenui

● The struct you have to build

ebitenui.UI
● It has one field that you have to

fill
– A container that will be the root

container of the GUI
– Remind us again what is a

container?
● Invisible UI element that holds the

visible components/widgets
● You apply layouts to containers.

● Set properties of a container with
ContainerOpts
– Like

● Layout
● WidgetOpts (to style the widgets in

the container

 32

Button

● Very solid but longer tutorial on
docs site
– https://ebitenui.github.io/widgets/bu

tton/index.html
– Create one with

widget.NewButton

– Parameters should be a list of
ButtonOpts objects

widget.ButtonOpts

● Common ButtonOpts
widget.ButtonOpts.ClickedHandler

– Pass a function to be called when
button pressed.

widget.ButtonOpts.TextLabel

widget.ButtonOpts.TextFace

widget.ButtonOpts.TextColor

– If your button has text, set it with
TextLabel, and then you have to have
a font and TextColor (struct)

widget.ButtonOpts.Image

– This will take a struct with the custom
images for the button’s various states

● Normal, mousehover, pressed etc

–

https://ebitenui.github.io/widgets/button/index.html
https://ebitenui.github.io/widgets/button/index.html

 33

Label

● What is a label control/widget in
GUIs?

 34

Label

● What is a label control/widget in
GUIs?
– Bit of text to explain nearby

elements to user
– Create one with

widget.NewLabel

– Pass a set of LabelOpts as
params

– A more simple widget so fewer
opts typically

● Two opts that likely matter
widget.LabelOpts.LabelColor

● Takes a LabelColor struct
widget.LabelOpts.LabelFace

● Takes a font fact

 35

Text Input
● Create a TextInput (text box)

using
widget.NewTextInput

● And as parameters pass several
TextInputOpts objects like

widget.TextInputOpts.Face

● To pass general WidgetOpts
widget.TextInputOpts.WidgetOpts

● To adjust the pixel offset of text
use

widget.TextInputOpts.Padding

● To set the image for the widget
(see nineslice soon)

widget.TextInputOpts.Image

– Takes a TextInputImage struct

● And for font color
widget.TextInputOpts.Color

– Takes a TextInputColor struct

 36

Color Structs

● All of these color structs contain
several colors each
– Why do you suppose?
– Lucky volunteer?

 37

Color Structs

● All of these color structs contain
several colors each
– Can use different colors in different

situation
● Selected
● Normal ect.

● TextInputColor example
widget.TextInputColor{

Idle: colornames.Bisque,
Disabled: colornames.Gray,
Caret: colornames.Black,
DisabledCaret: colornames.Gray,

}

● ButtonColor
widget.ButtonTextColor{

Idle: colornames.Azure,
Disabled: colornames.Gray,
Hover: colornames.Aquamarine,
Pressed: colornames.Aquamarine,

}

 38

Nine Slice

● What is an 8-Puzzle?
– Lucky volunteer?

 39

Nine Slice

● What is an 8-Puzzle?
– Puzzle divided into 9 locations

● 8 sliding tiles
● And space

● In the case of this puzzle
– All 9 parts are equal sized

 40

Nine Slice

● Because in game UI,
– you need to use arbitrary images

for widgets
– And those widgets need to be a

variety of sizes

● Solution: chop the image into nine
parts and stretch the middle as
much as we need to.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

