
Camera and Game GUIs
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Admin

● Upcoming scheduling
– The Nov 11 bridgewater twostep
– The final exam

● Project questions?
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Seeing part of the game ‘world’

● In early arcade video games we could see the whole ‘world’
– Then player could see everything all at once
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Seeing part of the game ‘world’

● In early arcade video games we could see the whole ‘world’
– Then player could see everything all at once
– Next we had the scrolling background to give the impression of a larger world
–
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Camera

● Eventually most games settled on the notion of a ‘camera’ which 
would show just the relevant part of the world on screen.
– For 2d games

● We might render the entire scene
● Then only draw part of it to the screen in draw
● Either using something like sub-image, or more likely just translating the large image 

so we see the relevant part.

– Built in to all of the engines
– We will use a library to help us out.
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Camera Libarary

● https://github.com/tducasse/ebiten-
camera

● Like most of the ebiten and ebiten 
adjacent projects
– Simple, extensible.
– Official readme ‘tutorial’ 

import camera "github.com/tducasse/ebiten-camera"

myCamera := camera.Init(screenWidth, screenHeight)
world := ebiten.NewImage(worldWidth, worldHeight)

ebiten.SetWindowSize(screenWidth*windowScale, 
screenHeight*windowScale)
// in your Draw call
world.Clear()
// your draw calls go here, but target world instead of screen
player.Draw(world)
// then draw the world onto the screen
myCamera.Draw(world, screen)

https://github.com/tducasse/ebiten-camera
https://github.com/tducasse/ebiten-camera
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My Comments

● Annotated
– You want variables in your 

game for the camera and 
‘world’ that you will init in main

– Init your camera with window 
size

– Then the rest is done in draw
– Let’s look as a slightly more 

complete demo
– https://github.com/jsantore/Sim

pleCamera
 

● import camera "github.com/tducasse/ebiten-camera"
●

●

● myCamera := camera.Init(screenWidth, screenHeight)
● world := ebiten.NewImage(worldWidth, worldHeight)
● ebiten.SetWindowSize(screenWidth*windowScale, 

screenHeight*windowScale)
●

● // in your Draw call
● world.Clear()
● // your draw calls go here, but target world 

instead of screen
● player.Draw(world)
● // then draw the world onto the screen
● myCamera.Draw(world, screen)

https://github.com/jsantore/SimpleCamera
https://github.com/jsantore/SimpleCamera
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Example

//go:embed assets
var EmbeddedAssets embed.FS

type cameraDemoGame struct {
background     *ebiten.Image //the background image on disk
displayedLevel *ebiten.Image //world image: background + player
cameraView     *camera.Camera 
player         player
drawOps        ebiten.DrawImageOptions

}

type player struct {
pict *ebiten.Image
x, y int

}

● Pretty standard update with 
bounds

func (demo *cameraDemoGame) Update() error {
if ebiten.IsKeyPressed(ebiten.KeyLeft) && demo.player.x > 100 

{
demo.player.x -= 5

} else if ebiten.IsKeyPressed(ebiten.KeyRight) && 
demo.player.x < 1800 {

demo.player.x += 5
log.Println("x is now ", demo.player.x)

}
if ebiten.IsKeyPressed(ebiten.KeyUp) && demo.player.y > 100 {

demo.player.y -= 5
} else if ebiten.IsKeyPressed(ebiten.KeyDown) && 

demo.player.y < 900 {
demo.player.y += 5

}
return nil

}
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Draw is where the difference is

● Draw to world, set follow, then have camera draw world sub image to 
screen

func (demo *cameraDemoGame) Draw(screen *ebiten.Image) {
//draw to the world at first
//first draw background
demo.drawOps.GeoM.Reset()
demo.displayedLevel.DrawImage(demo.background, &demo.drawOps)
//next draw player
demo.drawOps.GeoM.Reset()
demo.drawOps.GeoM.Translate(float64(demo.player.x), float64(demo.player.y))
demo.displayedLevel.DrawImage(demo.player.pict, &demo.drawOps)

//now move the camera to be over the player
demo.cameraView.Follow.H = demo.player.y * 2
demo.cameraView.Follow.W = demo.player.x * 2
//finally draw to the screen
demo.cameraView.Draw(demo.displayedLevel, screen)

}
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Let’s see it run

● Let’s download this and run it.



  11

Interfaces

● When you have interface components,
– Use the camera for the game as seen earlier, 
– Then draw the interface on the screen itself, after the camera has adjusted 
– For this first pass, we will just draw a bit of text on the screen as the camera 

moves around
● This is the simple camera demo with text added
● https://github.com/jsantore/CameraWithInterface 

–

https://github.com/jsantore/CameraWithInterface
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Changes from Simple Camera
● Added a LoadFontEmbedded

– Same as the old load font from the 
font demo, 

– but uses EmbbeddedFS.Open 
instead of os.Open

● Added to game struct
textOps        text.DrawOptions
drawFont       *text.GoXFace

● In main
fontFace := LoadFontEmbedded("Square-Black.ttf", 18)
drawFace := text.NewGoXFace(fontFace)

● Then used drawFace to initialize the 
drawfont in the game struct 

● Draw added several new lines at 
the end 

● Now lets see it work
//Newly adding a first pass at an interface
demo.textOps.GeoM.Reset()
demo.textOps.GeoM.Translate(50, 50) //let's start the text in the upper 
left of the window
demo.textOps.ColorScale.Reset()
demo.textOps.ColorScale.ScaleWithColor(colornames.Wheat)
info := fmt.Sprintf("Player is at %d, %d", demo.player.x, demo.player.y)
text.Draw(screen, info, demo.drawFont, &demo.textOps)
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GUI

● What is a gui?
– The lucky volunteer program keeps on 

trucking.
–
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GUI

● What is a gui?
– The lucky volunteer program keeps on 

trucking.
– Potential Answer:

● A set of controls for allowing the user to 
more easily interact with the program
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GUI

● What is a gui from the point of view 
of the application developer?
– lucky volunteer?
–
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GUI

● What is a gui from the point of view 
of the application developer?
– A set of components that respond to 

events, and you provide those 
components your functions to call 
when the events happen

– Or something like this right?
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GUI

● What is a gui from the point of view 
of the GUI library developer?
– Lucky Volunteer?
– This one is harder – since most of you 

were the users of gui libraries
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GUI

● What is a gui from the point of view 
of the GUI library developer?
– A library that draws an image at a 

particular point in the screen/window
– When the component represented by 

the image gains ‘focus’ then it will ask 
the operating system to send all 
events to it.

– Then the component will call your 
handler functions when the right 
events from the OS arrive.
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GUIs

● Windowed operating systems all provide a set of images for their GUI 
controls (system native) eg Windows 11 (left) and MacOS (right)

● Image credit to Microsoft and Apple developer docs

●

●

● Other libraries provide their 
own images

● But system native libraries are often desired so that users can use hard 
won knowledge of how a program ‘should’ work. 
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GUIs for Games
● Often Games want a unique look

– Don’t want our game to look like the spreadsheet we use for work.
– So often want our programs to use custom images for components.
– So we might use text entry and two sets of images for a checkbox, in the 

checked and unchecked states.
–

–

– Depending on our game



  21

GUIs for games

● So how do we get these unique GUIs?
– Lucky volunteer?
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GUIs for games

● So how do we get these unique GUIs?
– We could build our own engine with custom GUI components
– Or?



  23

GUIs for games

● So how do we get these unique GUIs?
– We could build our own engine with custom GUI components
– Or we could use an existing engine/library which will take custom images and 

use them.
● Godot and Unity both have gui components that will take a custom image.
● For ebitengine there is a related library ebitenui
● https://github.com/ebitenui/ebitenui
● This library has seen a major overhaul and a lot of improvements in the first half of the 

year. (if you find my old stuff on ebitenui – it will now all be wrong/outdated).
● Docs at https://ebitenui.github.io/ for more
● Ebitenui comes with a default set of images, but allows you to use your own.

https://github.com/ebitenui/ebitenui
https://ebitenui.github.io/
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Arraigning GUIs

● Game guis work a lot more like old desktop UIs than modern 
reactive/mobile Uis
– Usually don’t change game resolution or arraignment 
– You all had to take comp152 to get here 

● And Comp152 has GUI programming as a mandatory outcome
● So how are (desktop first) GUIs usually arraigned?

– How do you specify where everything goes? 
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Arraigning GUIs

● Game guis work a lot more like old desktop UIs than modern 
reactive/mobile Uis
– Usually don’t change game resolution or arraignment 
– You all had to take comp152 to get here 

● And Comp152 has GUI programming as a mandatory outcome
● So how are (desktop first) GUIs usually arraigned?

– How do you specify where everything goes? 

● Usually there are some sort of  Container with a Layout object that determines this.
● Give me some examples of Layouts you have run into?

– Lets put them on the board.
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Arraigning GUIs

● EbitenUI supports subset of these 
layouts.
– AnchorLayout
–

–

–

–

–

– RowLayout
● Vertical
● Or horzontal

● GridLayout
●

●

●

●

●

●

● StackedLayout
– Not yet well documented

● Images all from official docs
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Arraigning GUIs

● To make arbitrary Uis
– Put a container with one Layout inside of another container with another 

layout.
– Putting a rowLayout inside of the center pane of an anchor layout for 

example
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Control over look, feel, behavior

● In most GUIs 
– You can have a great deal of control over things like fonts and colors
– But there are defaults that are automatically selected to make it look like 

every other gui on that OS

● For games
– We want it to look unique
– So ebitenui tends to make you set some values yourself.

● Eg, no default font or font color.
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ebitenui

● Since this is ebitenui, it is design to work with the ebiten library
– There is a draw and update in the UI object
– If you are using a camera

● Call ui.Draw after you do all of your camera drawing to the screen
– Or your UI will end up being drawn offscreen.

●
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Ebitenui

● The struct you have to build

ebitenui.UI 
● It has one field that you have to 

fill
– A container that will be the root 

container of the GUI
– Remind us again what is a 

container?
● Lucky volunteer
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Ebitenui

● The struct you have to build

ebitenui.UI 
● It has one field that you have to 

fill
– A container that will be the root 

container of the GUI
– Remind us again what is a 

container?
● Invisible UI element that holds the 

visible components/widgets
● You apply layouts to containers.

● Set properties of a container with 
ContainerOpts
– Like

● Layout
● WidgetOpts (to style the widgets in 

the container
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Button

● Very solid but longer tutorial on 
docs site
– https://ebitenui.github.io/widgets/bu

tton/index.html
– Create one with 

widget.NewButton

– Parameters should be a list of 
ButtonOpts objects

widget.ButtonOpts 

● Common ButtonOpts
widget.ButtonOpts.ClickedHandler

– Pass a function to be called when 
button pressed.

widget.ButtonOpts.TextLabel

widget.ButtonOpts.TextFace

widget.ButtonOpts.TextColor

– If your button has text, set it with 
TextLabel, and then you have to have 
a font and TextColor (struct)

widget.ButtonOpts.Image

– This will take a struct with the custom 
images for the button’s various states 

● Normal, mousehover, pressed etc

–

https://ebitenui.github.io/widgets/button/index.html
https://ebitenui.github.io/widgets/button/index.html
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Label

● What is a label control/widget in 
GUIs?
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Label

● What is a label control/widget in 
GUIs?
–  Bit of text to explain nearby 

elements to user
– Create one with

widget.NewLabel

– Pass a set of LabelOpts as 
params

– A more simple widget so fewer 
opts typically

● Two opts that likely matter
widget.LabelOpts.LabelColor

● Takes a LabelColor struct
widget.LabelOpts.LabelFace

● Takes a font fact
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Text Input
● Create a TextInput (text box) 

using
widget.NewTextInput

● And as parameters pass several 
TextInputOpts objects like

widget.TextInputOpts.Face

● To pass general WidgetOpts
widget.TextInputOpts.WidgetOpts

● To adjust the pixel offset of text 
use

widget.TextInputOpts.Padding

● To set the image for the widget 
(see nineslice soon)

widget.TextInputOpts.Image

– Takes a TextInputImage struct

● And for font color
widget.TextInputOpts.Color

– Takes a TextInputColor struct
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Color Structs

● All of these color structs contain 
several colors each
– Why do you suppose?
– Lucky volunteer?
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Color Structs

● All of these color structs contain 
several colors each
– Can use different colors in different 

situation
● Selected
● Normal ect.

● TextInputColor example
widget.TextInputColor{

Idle:          colornames.Bisque,
Disabled:      colornames.Gray,
Caret:         colornames.Black,
DisabledCaret: colornames.Gray,

}

● ButtonColor
widget.ButtonTextColor{

Idle:     colornames.Azure,
Disabled: colornames.Gray,
Hover:    colornames.Aquamarine,
Pressed:  colornames.Aquamarine,

}
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Nine Slice

● What is an 8-Puzzle?
– Lucky volunteer?
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Nine Slice

● What is an 8-Puzzle?
– Puzzle divided into 9 locations

●  8 sliding tiles 
● And space

● In the case of this puzzle
– All 9 parts are equal sized
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Nine Slice

● Because in game UI, 
– you need to use arbitrary images 

for widgets
– And those widgets need to be a 

variety of sizes

● Solution: chop the image into nine 
parts and stretch the middle as 
much as we need to. 
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