
Maps and Tiles
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● Admin
● Questions?
● Schedule?
● Projects/Assignments?
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Creating backgrounds

● We've looked at creating scrolling backgrounds

– using large images 
● other backgrounds

– particularly for building worlds
– want to build large world feel

● minimal art resources
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Inspiration from history

● The Greeks and Romans did it
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Mosaic concept

● Use lots of tiles

– more or less identical sized
– limited number of different colors
– create lots of different images



  6

Use same concept in games

● Using mosaic concept in games

– tiles are now images
● identical sizes
● relatively small number of images

– use a combination of images to build a “world”
● use different combination of same images to create different world
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Simple approach

● Simple tiled maps can be setup 

– sort of 'paint by number' approach
– create 'map' in text file

● read in text file to load map into memory
● each character in text file refers to a particular image

– place image into window in appropriate grid location

– will look at steps
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Get images for world building

● Some old simple images:

●

●

● Or the one file approach:

– On web second is best
– Locally, which ever
– Why?
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Text File Approach

● Choose a character to 
represent an image/tile in 1-1 
relationship

– even in ascii 100+ characters
– build the file

● sample:
– BBBBBB
– BDDDDB
– DDDDDB
– BGGGGB
– BGGGGB
– BBBBBB

● B= Brick; D= dirt; G = grass
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Library Tiled map support

● In the old days we would read in this text file, then parse the 
characters out in a big embedded for loop.

● There are libraries now that build in support for tiled maps so we 
don’t have to do it ourselves now.

● Supports map files built using mapeditor

– https://www.mapeditor.org/
● Build it yourself and skip the please pay screen: 

https://github.com/bjorn/tiled.git

● Or:

https://www.mapeditor.org/
https://github.com/bjorn/tiled.git
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Tiled/MapEditor

● Get the prebuilt version

● My recommendation:

– Download now as 
poor student

– If you still use it after
graduation, then kick in
a few bucks.
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Tiled/MapEditor

● Grab some images from 
somewhere

– Make sure they are all the 
same size

– Typical sizes are 72x72 and 
various powers of 2

● 32x32
● 64x64
● 128x128
● 256x256

● You can find a small set of 
very simple tiles in the demo 
on github.

●
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Create A New Map

● When running tiled, first 
create new map

– Orientation: our library only 
promises Orthogonal (top 
down) will work

– Choose a fixed map size of 
your choice

– Adjust tile size to be the size
of your images.
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TileSets

● Now that we have a map, we need some tiles

– Tiled supports tileset images
● Single images with many tiles embedded in them

– And a collection of individual images.
– Choose <file><new tileset>
– Or hit the <New Tileset> button in the section to 

the bottom right of the screen----------------------> 
– We'll choose 

● "Collection of images" and 
● "Embed in map"
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Tileset with no tiles

● Now we have a tileset with 
no tiles.

– We need to add them.
– Choose edit tileset
– Which is hard to find
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Add new tile to tileset

● Now we need to add tiles to tileset.

– Press the “+” button
– From the resulting

file dialog select
your images

– I recommend having them in your 
assets folder already

● A subdirectory of your project where you 
will save this map as well

– Then select your map.
● It will be a tab in tiled. 
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Build Basic map

● Now to build a basic map

– Use the tiles to paint the map 
with and save the map
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Very Simple first program

● For the last time, we will dump 
all of the files into the main 
project folder

● Get the zip file from the 
resources page to follow 
along.

● The starting code is here:→ 
– More coming next

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/lafriks/go-tiled"
"os"

)

const mapPath = "demoMap.tmx" // Path to your Tiled Map.

type mapGame struct {
Level    *tiled.Map
tileHash map[uint32]*ebiten.Image

}

func (m mapGame) Update() error {
return nil

}

func (m mapGame) Layout(outsideWidth, outsideHeight int) 
(screenWidth, screenHeight int) {

//TODO implement me
return outsideWidth, outsideHeight

}
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Main function

func main() {
// Parse .tmx file.
gameMap, err := tiled.LoadFile(mapPath)
windowWidth := gameMap.Width * gameMap.TileWidth
windowHeight := gameMap.Height * gameMap.TileHeight
ebiten.SetWindowSize(windowWidth, windowHeight)
if err != nil {

fmt.Printf("error parsing map: %s", err.Error())
os.Exit(2)

}
ebitenImageMap := makeEbiteImagesFromMap(*gameMap)
oneLevelGame := mapGame{

Level:    gameMap,
tileHash: ebitenImageMap,

}
fmt.Println("tilesets:", gameMap.Tilesets[0].Tiles)
//fmt.Println("layers:", gameMap.Layers[0].Tiles)
fmt.Print("type:", fmt.Sprintf("%T", gameMap.Layers[0].Tiles[0]))
err = ebiten.RunGame(&oneLevelGame)
if err != nil {

fmt.Println("Couldn't run game:", err)
}

}

func makeEbiteImagesFromMap(tiledMap tiled.Map) 
map[uint32]*ebiten.Image {

idToImage := make(map[uint32]*ebiten.Image)
for _, tile := range tiledMap.Tilesets[0].Tiles {

ebitenImageTile, _, err := 
ebitenutil.NewImageFromFile(tile.Image.Source)

if err != nil {
fmt.Println("Error loading tile image:", 

tile.Image.Source, err)
}
idToImage[tile.ID] = ebitenImageTile

}
return idToImage

}
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And finally Draw

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw := 

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw, 

&drawOptions)
}

}
}

● Notice that we are drawing 
each tile one by one
– If an engine hides this, it is 

still being done
– Is there any way around 

this?
– If we haven't done this before

● Let's put this into goland and 
see it work.
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Efficiency: games need it.

● For efficiency:
– create a new image
– Draw the map onto the image once
– Just draw that one image till the 

end of the game
– Update the game to include a third 

member the image for the map 
background.

type mapGame struct {
Level         *tiled.Map
tileHash      map[uint32]*ebiten.Image
drawableLevel *ebiten.Image

}

● Then draw the map to this image
func buildDrawableLevel(game *mapGame) {

screen := game.drawableLevel
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw := 

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw, 

&drawOptions)
}

}
}

● And now draw is just two lines
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Complete

● See for the complete rewrite
● https://github.com/jsantore/M

apDemoOneImage
 

https://github.com/jsantore/MapDemoOneImage
https://github.com/jsantore/MapDemoOneImage
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Go:embed

● Amazing added  feature in 
go.
– You can embed files directly 

into the go program (the final 
executable) so all you have 
to give someone is a single 
executable file

– Text files, images etc
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Go:embed    II

● Usage
● You need the go:embed directive in a comment immediately 

over a global (or at least package wide) variable, which will hold 
the embedded asset

● Eg:
● //go:embed assets/*

var EmbeddedAssets embed.FS
● This will take everything in the assets subfolder of the project 

and treat it as a file system
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Go:Embed III

● Example function to open 
an image from embedded 
file system.

● Haven't tried to be 'clever'
– Still have one function per 

file type 

● Example load function
func loadPNGImageFromEmbedded(name string) *ebiten.Image {

embeddedFile, err := EmbeddedAssets.Open("assets/" + 
name)

if err != nil {
log.Fatal("failed to load embedded image ", 

embeddedFile, err)
}
rawImage, err := png.Decode(embeddedFile)
if err != nil {

log.Fatal("failed to load embedded image ", name, err)
}
gameImage := ebiten.NewImageFromImage(rawImage)
return gameImage

}
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So now we will use folders

● Ok, so now we will never put 
our assets into the main 
folder again?

● Why?
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Now lets build the map embedded 

● Make a new goland project
– Make a folder called assets
– Unzip the zip file we got for 

our last demo into the assets 
folder.

– Make a new go file
● Now we are ready to begin.

● The start of the file:
package main

import (
"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/lafriks/go-tiled"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

type mapGame struct {
Level    *tiled.Map
tileHash map[uint32]*ebiten.Image

}
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The ebiten.Game interface

● The three methods 
required by the 
ebiten.Game interface are 
the same as for the naive 
implementation
– You can copy them from 

the previous version. 

func (m mapGame) Update() error {
return nil

}

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw := 

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw, &drawOptions)

}}}

func (m mapGame) Layout(outsideWidth, outsideHeight int) (screenWidth, 
screenHeight int) {

return outsideWidth, outsideHeight
}
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Main

● Main function primarily differs 
in which functions are called 
to load map/images

●

func main() {
gameMap := loadMapFromEmbedded(path.Join("assets", 

"demoMap.tmx"))

ebiten.SetWindowSize(gameMap.TileWidth*gameMap.Width, 
gameMap.TileHeight*gameMap.Height)

ebiten.SetWindowTitle("Maps Embedded")
ebitenImageMap := 

makeEbiteImagesFromMap(*gameMap)
oneLevelGame := mapGame{

Level:    gameMap,
tileHash: ebitenImageMap,

}
err := ebiten.RunGame(&oneLevelGame)
if err != nil {

fmt.Println("Couldn't run game:", err)
}

}



  30

Loading the map

● Big change is how map is 
loaded and images

● Let's look at this then try it
● func loadMapFromEmbedded(name string) *tiled.Map {

embeddedMap, err := tiled.LoadFile(name, 
tiled.WithFileSystem(EmbeddedAssets))

if err != nil {
fmt.Println("Error loading embedded map:", 

err)
}
return embeddedMap

}

● See the whole thing here:

● https://github.com/shinjitsu/TiledWithEmbed

func makeEbiteImagesFromMap(tiledMap tiled.Map) 
map[uint32]*ebiten.Image {

idToImage := make(map[uint32]*ebiten.Image)
for _, tile := range tiledMap.Tilesets[0].Tiles {
embeddedFile, err := EmbeddedAssets.Open(path.Join("assets", 

tile.Image.Source))
if err != nil {
log.Fatal("failed to load embedded image ", embeddedFile, err)
}
ebitenImageTile, _, err := 

ebitenutil.NewImageFromReader(embeddedFile)
if err != nil {
fmt.Println("Error loading tile image:", tile.Image.Source, err)
}
idToImage[tile.ID] = ebitenImageTile
}
return idToImage

}
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Questions?
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