
Maps and Tiles

 2

● Admin
● Questions?
● Schedule?
● Projects/Assignments?

 3

Creating backgrounds

● We've looked at creating scrolling backgrounds

– using large images
● other backgrounds

– particularly for building worlds
– want to build large world feel

● minimal art resources

 4

Inspiration from history

● The Greeks and Romans did it

 5

Mosaic concept

● Use lots of tiles

– more or less identical sized
– limited number of different colors
– create lots of different images

 6

Use same concept in games

● Using mosaic concept in games

– tiles are now images
● identical sizes
● relatively small number of images

– use a combination of images to build a “world”
● use different combination of same images to create different world

 7

Simple approach

● Simple tiled maps can be setup

– sort of 'paint by number' approach
– create 'map' in text file

● read in text file to load map into memory
● each character in text file refers to a particular image

– place image into window in appropriate grid location

– will look at steps

 8

Get images for world building

● Some old simple images:

●

●

● Or the one file approach:

– On web second is best
– Locally, which ever
– Why?

 9

Text File Approach

● Choose a character to
represent an image/tile in 1-1
relationship

– even in ascii 100+ characters
– build the file

● sample:
– BBBBBB
– BDDDDB
– DDDDDB
– BGGGGB
– BGGGGB
– BBBBBB

● B= Brick; D= dirt; G = grass

 10

Library Tiled map support

● In the old days we would read in this text file, then parse the
characters out in a big embedded for loop.

● There are libraries now that build in support for tiled maps so we
don’t have to do it ourselves now.

● Supports map files built using mapeditor

– https://www.mapeditor.org/
● Build it yourself and skip the please pay screen:

https://github.com/bjorn/tiled.git

● Or:

https://www.mapeditor.org/
https://github.com/bjorn/tiled.git

 11

Tiled/MapEditor

● Get the prebuilt version

● My recommendation:

– Download now as
poor student

– If you still use it after
graduation, then kick in
a few bucks.

 12

Tiled/MapEditor

● Grab some images from
somewhere

– Make sure they are all the
same size

– Typical sizes are 72x72 and
various powers of 2

● 32x32
● 64x64
● 128x128
● 256x256

● You can find a small set of
very simple tiles in the demo
on github.

●

 13

Create A New Map

● When running tiled, first
create new map

– Orientation: our library only
promises Orthogonal (top
down) will work

– Choose a fixed map size of
your choice

– Adjust tile size to be the size
of your images.

 14

TileSets

● Now that we have a map, we need some tiles

– Tiled supports tileset images
● Single images with many tiles embedded in them

– And a collection of individual images.
– Choose <file><new tileset>
– Or hit the <New Tileset> button in the section to

the bottom right of the screen---------------------->
– We'll choose

● "Collection of images" and
● "Embed in map"

 15

Tileset with no tiles

● Now we have a tileset with
no tiles.

– We need to add them.
– Choose edit tileset
– Which is hard to find

 16

Add new tile to tileset

● Now we need to add tiles to tileset.

– Press the “+” button
– From the resulting

file dialog select
your images

– I recommend having them in your
assets folder already

● A subdirectory of your project where you
will save this map as well

– Then select your map.
● It will be a tab in tiled.

 17

Build Basic map

● Now to build a basic map

– Use the tiles to paint the map
with and save the map

 18

Very Simple first program

● For the last time, we will dump
all of the files into the main
project folder

● Get the zip file from the
resources page to follow
along.

● The starting code is here:→
– More coming next

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/lafriks/go-tiled"
"os"

)

const mapPath = "demoMap.tmx" // Path to your Tiled Map.

type mapGame struct {
Level *tiled.Map
tileHash map[uint32]*ebiten.Image

}

func (m mapGame) Update() error {
return nil

}

func (m mapGame) Layout(outsideWidth, outsideHeight int)
(screenWidth, screenHeight int) {

//TODO implement me
return outsideWidth, outsideHeight

}

 19

Main function

func main() {
// Parse .tmx file.
gameMap, err := tiled.LoadFile(mapPath)
windowWidth := gameMap.Width * gameMap.TileWidth
windowHeight := gameMap.Height * gameMap.TileHeight
ebiten.SetWindowSize(windowWidth, windowHeight)
if err != nil {

fmt.Printf("error parsing map: %s", err.Error())
os.Exit(2)

}
ebitenImageMap := makeEbiteImagesFromMap(*gameMap)
oneLevelGame := mapGame{

Level: gameMap,
tileHash: ebitenImageMap,

}
fmt.Println("tilesets:", gameMap.Tilesets[0].Tiles)
//fmt.Println("layers:", gameMap.Layers[0].Tiles)
fmt.Print("type:", fmt.Sprintf("%T", gameMap.Layers[0].Tiles[0]))
err = ebiten.RunGame(&oneLevelGame)
if err != nil {

fmt.Println("Couldn't run game:", err)
}

}

func makeEbiteImagesFromMap(tiledMap tiled.Map)
map[uint32]*ebiten.Image {

idToImage := make(map[uint32]*ebiten.Image)
for _, tile := range tiledMap.Tilesets[0].Tiles {

ebitenImageTile, _, err :=
ebitenutil.NewImageFromFile(tile.Image.Source)

if err != nil {
fmt.Println("Error loading tile image:",

tile.Image.Source, err)
}
idToImage[tile.ID] = ebitenImageTile

}
return idToImage

}

 20

And finally Draw

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw :=

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw,

&drawOptions)
}

}
}

● Notice that we are drawing
each tile one by one
– If an engine hides this, it is

still being done
– Is there any way around

this?
– If we haven't done this before

● Let's put this into goland and
see it work.

 21

Efficiency: games need it.

● For efficiency:
– create a new image
– Draw the map onto the image once
– Just draw that one image till the

end of the game
– Update the game to include a third

member the image for the map
background.

type mapGame struct {
Level *tiled.Map
tileHash map[uint32]*ebiten.Image
drawableLevel *ebiten.Image

}

● Then draw the map to this image
func buildDrawableLevel(game *mapGame) {

screen := game.drawableLevel
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw :=

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw,

&drawOptions)
}

}
}

● And now draw is just two lines

 22

Complete

● See for the complete rewrite
● https://github.com/jsantore/M

apDemoOneImage

https://github.com/jsantore/MapDemoOneImage
https://github.com/jsantore/MapDemoOneImage

 23

Go:embed

● Amazing added feature in
go.
– You can embed files directly

into the go program (the final
executable) so all you have
to give someone is a single
executable file

– Text files, images etc

 24

Go:embed II

● Usage
● You need the go:embed directive in a comment immediately

over a global (or at least package wide) variable, which will hold
the embedded asset

● Eg:
● //go:embed assets/*

var EmbeddedAssets embed.FS
● This will take everything in the assets subfolder of the project

and treat it as a file system

 25

Go:Embed III

● Example function to open
an image from embedded
file system.

● Haven't tried to be 'clever'
– Still have one function per

file type

● Example load function
func loadPNGImageFromEmbedded(name string) *ebiten.Image {

embeddedFile, err := EmbeddedAssets.Open("assets/" +
name)

if err != nil {
log.Fatal("failed to load embedded image ",

embeddedFile, err)
}
rawImage, err := png.Decode(embeddedFile)
if err != nil {

log.Fatal("failed to load embedded image ", name, err)
}
gameImage := ebiten.NewImageFromImage(rawImage)
return gameImage

}

 26

So now we will use folders

● Ok, so now we will never put
our assets into the main
folder again?

● Why?

 27

Now lets build the map embedded

● Make a new goland project
– Make a folder called assets
– Unzip the zip file we got for

our last demo into the assets
folder.

– Make a new go file
● Now we are ready to begin.

● The start of the file:
package main

import (
"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/lafriks/go-tiled"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

type mapGame struct {
Level *tiled.Map
tileHash map[uint32]*ebiten.Image

}

 28

The ebiten.Game interface

● The three methods
required by the
ebiten.Game interface are
the same as for the naive
implementation
– You can copy them from

the previous version.

func (m mapGame) Update() error {
return nil

}

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawImageOptions{}
for tileY := 0; tileY < game.Level.Height; tileY += 1 {

for tileX := 0; tileX < game.Level.Width; tileX += 1 {
drawOptions.GeoM.Reset()
TileXpos := float64(game.Level.TileWidth * tileX)
TileYpos := float64(game.Level.TileHeight * tileY)
drawOptions.GeoM.Translate(TileXpos, TileYpos)
tileToDraw :=

game.Level.Layers[0].Tiles[tileY*game.Level.Width+tileX]
ebitenTileToDraw := game.tileHash[tileToDraw.ID]
screen.DrawImage(ebitenTileToDraw, &drawOptions)

}}}

func (m mapGame) Layout(outsideWidth, outsideHeight int) (screenWidth,
screenHeight int) {

return outsideWidth, outsideHeight
}

 29

Main

● Main function primarily differs
in which functions are called
to load map/images

●

func main() {
gameMap := loadMapFromEmbedded(path.Join("assets",

"demoMap.tmx"))

ebiten.SetWindowSize(gameMap.TileWidth*gameMap.Width,
gameMap.TileHeight*gameMap.Height)

ebiten.SetWindowTitle("Maps Embedded")
ebitenImageMap :=

makeEbiteImagesFromMap(*gameMap)
oneLevelGame := mapGame{

Level: gameMap,
tileHash: ebitenImageMap,

}
err := ebiten.RunGame(&oneLevelGame)
if err != nil {

fmt.Println("Couldn't run game:", err)
}

}

 30

Loading the map

● Big change is how map is
loaded and images

● Let's look at this then try it
● func loadMapFromEmbedded(name string) *tiled.Map {

embeddedMap, err := tiled.LoadFile(name,
tiled.WithFileSystem(EmbeddedAssets))

if err != nil {
fmt.Println("Error loading embedded map:",

err)
}
return embeddedMap

}

● See the whole thing here:

● https://github.com/shinjitsu/TiledWithEmbed

func makeEbiteImagesFromMap(tiledMap tiled.Map)
map[uint32]*ebiten.Image {

idToImage := make(map[uint32]*ebiten.Image)
for _, tile := range tiledMap.Tilesets[0].Tiles {
embeddedFile, err := EmbeddedAssets.Open(path.Join("assets",

tile.Image.Source))
if err != nil {
log.Fatal("failed to load embedded image ", embeddedFile, err)
}
ebitenImageTile, _, err :=

ebitenutil.NewImageFromReader(embeddedFile)
if err != nil {
fmt.Println("Error loading tile image:", tile.Image.Source, err)
}
idToImage[tile.ID] = ebitenImageTile
}
return idToImage

}

 31

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

