
Early Game Programming

 2

Admin

● Questions from last time?
●

 3

Game Programming

● Reminder from Day 1
– There are popular engines that will hide some of the details we'll look at here

from you
● Unity/Unreal/Godot/etc

– Those are great but…..
● Just like you should see how data structures and searches/sorts work and implement

them in Data Structures
– But once you get into the working world you would never implement them yourself
– You would use the versions in the standard library for the language you use

● By the same token I want you to understand the underlying concepts for game
(especially 2D games)

● Even if you end up using these frameworks to hide some of that later.

– Also - everything gets replaced

 4

Movement

● How might we create movement
– Or the illusion of movement

● For the player in our 2D games?

 5

Movement

● How might we create movement
– Or the illusion of movement

● For the player in our 2D games?
– Move the player image in the window

● Like we did last time

– Move a background in the window
● And have the player image on top of it.

 6

Scroller Games

● Scroller games fairly straightforward to implement

● side/top scroller same principle
● create illusion of movement and continuity in direction of

scrolling (side to side or top to bottom) by moving
background.

● allow player sprite to move in other direction.
● firing varies.

 7

Two Scroller Techniques

● There are two easy scrolling background techniques

– In both cases the background is a sprite
– It is drawn before any of the foreground sprites.

● First use one big image

● Second use two identical images.

 8

Scrolling Background I

● Use one large image (specially crafted)

– image is three times as large as the screen/window
– Beginning and end thirds of the image are identical.
– Move the image across the window
– When the image is about to show window pixels, move it back to start

position.

● Image credit:
● Game Programming

– By Harris
● Published by Wiley
●

A second approach
● Another approach that works with nearly any image:

– Another approach to scrolling background
– have two background instances and show them one after another
– no need to have identical parts of the image any more
– just need beginning and end of image to match

– sample:

 11

Lets try

● We will combine the two
– We'll use a background image

repeated three times
– Draw on board if/as needed

● This will be our background image
– Note the green bits at the bottom
– And the while clouds
– Are all about the same height on left

and right side of image.
● We'll see the clouds look a little funky

 12

Lets look at the code

package main

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
_ "image/png"

)

type scrollDemo struct {
player *ebiten.Image
background *ebiten.Image
backgroundXView int

}

● First imports and our game
struct

● Mostly similar to last time
– We won't use the player in

the first pass.

● Any questions?

 13

The Main function

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("Scroller Example")
//New image from file returns image as image.Image (_) and ebiten.Image
backgroundPict, _, err :=

ebitenutil.NewImageFromFile("background.png")
if err != nil {

fmt.Println("Unable to load background image:", err)
}

demo := scrollDemo{
player: nil,
background: backgroundPict,

}
err = ebiten.RunGame(&demo)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Our main is also
fairly similar to last
time,

● but let's look at it.
● Then any

questions?

 14

Update and Layout

func (demo *scrollDemo) Update() error {
backgroundWidth := demo.background.Bounds().Dx()
maxX := backgroundWidth * 2
demo.backgroundXView -= 4
demo.backgroundXView %= maxX
return nil

}

func (s scrollDemo) Layout(outsideWidth, outsideHeight int)
(screenWidth, screenHeight int) {

return outsideWidth, outsideHeight
}

● Layout same as before
● Update

– The max we want to scroll is
2 times the size

● (that will leave one copy on
the screen)

– Move the image 4 pixels left
– If we have moved more than

2 copies of the background
over, then move it back to
the beginning

 15

Draw

func (demo *scrollDemo) Draw(screen *ebiten.Image) {
drawOps := ebiten.DrawImageOptions{}
const repeat = 3
backgroundWidth := demo.background.Bounds().Dx()
for count := 0; count < repeat; count += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(backgroundWidth*count),

float64(-1000))
drawOps.GeoM.Translate(float64(demo.backgroundXView), 0)
screen.DrawImage(demo.background, &drawOps)

}
}

● Draw the background 3
times
– Move it off the top of the

screen (image is 2k
pixels tall)

– Move it horizontally first
by its position in the three
image roll

– Then by the amount
calculated in update

 16

Lets take a look

● Let's put it all together and
run it.

● https://github.com/jsantore/B
areBonesScroll

● I’ve updated it from the
slides for full screen.

https://github.com/jsantore/BareBonesScroll
https://github.com/jsantore/BareBonesScroll

 17

Input

● It is all well and good to move an image on the screen
– And it is needed for games

● But without user input, it isn't really a game.
● So lets get some input

– Start with traditional laptop/desktop rather than controllers and touch

● So how will we get input?

 18

Input

● It is all well and good to move an image on the screen
– And it is needed for games

● But without user input, it isn't really a game.
● So lets get some input

– Start with traditional laptop/desktop rather than controllers and touch

● So how will we get input?
– Mouse and keyboard first, let's start with mouse

 19

Ebitengine InputUtil Module

● The functions you want are in the InputUtil package
● Mouse

– func IsMouseButtonJustPressed(button ebiten.MouseButton) bool
● returns a boolean value indicating whether the given mouse button is pressed just in the

current tick.
● IsMouseButtonJustPressed must be called in a game's Update, not Draw.

– func IsMouseButtonJustReleased(button ebiten.MouseButton) bool
● IsMouseButtonJustReleased returns a boolean value indicating whether the given mouse

button is released just in the current tick.
● IsMouseButtonJustReleased must be called in a game's Update, not Draw.

– func MouseButtonPressDuration(button ebiten.MouseButton) int
● MouseButtonPressDuration returns how long the mouse button is pressed in ticks (Update).
● MouseButtonPressDuration must be called in a game's Update, not Draw.

 20

Check Mouse Click

● The checkIfTargetClicked is
called from Update

● The CursorPosition is in
window coordinates

type Target struct {
pict *ebiten.Image
dx int
dy int
x int
y int
count int

}

func checkIfTargetClicked(target Target) bool {
if inpututil.IsMouseButtonJustPressed(ebiten.MouseButton0) {

mouseX, mouseY := ebiten.CursorPosition()
goalWidth := target.pict.Bounds().Dx()
goalHeight := target.pict.Bounds().Dy()
if mouseX > target.x && mouseX < target.x+goalWidth &&

mouseY < target.y+goalHeight && mouseY > target.y
{

return true
}

}
return false

}

 21

Keyboard Input

● Keyboard input is in two
different modules

ebiten.IsKeyPressed(<key>)
– Returns true if <key> is pressed,

false if it is not pressed

inpututil.IsKeyJustPressed(key)
– Returns true if <key> was

pressed in this update cycle.

● Both must be called from
update, not draw

● For example
func getPlayerInput(game *scrollerGame) {

if ebiten.IsKeyPressed(ebiten.KeyArrowUp) &&
game.Player.yLoc > 0 {

game.Player.yLoc -= 3
} else if ebiten.IsKeyPressed(ebiten.KeyArrowDown) &&

game.Player.yLoc < WINDOW_HEIGHT-
game.Player.pict.Bounds().Dy() {

game.Player.yLoc += 3
}
if inpututil.IsKeyJustPressed(ebiten.KeySpace) {

firePlayerShot(game)
}

}

 22

Sounds

● While we could have a game with just images,
– Sound is really vital
– Ebitengine has methods for playing sounds
– At first let's look at the simplest possible setup

● Playing a wav file that is in the same folder as the main project.

– Full demo
● https://github.com/jsantore/SimpleEbitenSound

– But we'll look at the vital/new pieces in the following slides.

https://github.com/jsantore/SimpleEbitenSound

 23

Sounds II

● In Ebitengine
– Playing sounds requires both

● an audio.Context

– And
● And audio.Player

– All of the audio players can share a
context if they need/want to.

– You need one player per sound.

● Imports and 'game' struct
import (

"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/audio"
"github.com/hajimehoshi/ebiten/v2/audio/wav"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"golang.org/x/image/colornames"
"os"

)

type soundDemo struct {
audioContext *audio.Context
soundPlayer *audio.Player
counter int

}

 24

Sounds III

● Create the context and sound
player for the struct in main

func main() {
soundContext := audio.NewContext(SOUND_SAMPLE_RATE)
soundGame := soundDemo{

audioContext: soundContext,
soundPlayer: LoadWav("Thunder1.wav", soundContext),
counter: 20,

}
ebiten.SetWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT)
ebiten.SetWindowTitle("Demo Simple Soundr")
err := ebiten.RunGame(&soundGame)
if err != nil {

}

}

● Load the sound file
func LoadWav(name string, context *audio.Context) *audio.Player {

thunderFile, err := os.Open(name)
if err != nil {

fmt.Println("Error Loading sound: ", err)
}
thunderSound, err :=

wav.DecodeWithoutResampling(thunderFile)
if err != nil {

fmt.Println("Error interpreting sound file: ", err)
}
soundPlayer, err := context.NewPlayer(thunderSound)
if err != nil {

fmt.Println("Couldn't create sound player: ", err)
}
return soundPlayer

}

 25

Using the sounds

● Let's use the sound now
func (demo *soundDemo) Update() error {

demo.counter += 1
if inpututil.IsKeyJustPressed(ebiten.KeySpace) {

demo.soundPlayer.Rewind()
demo.soundPlayer.Play()
demo.counter = 0

}
return nil

}
func (s soundDemo) Draw(screen *ebiten.Image) {

if s.counter >= 20 {
screen.Fill(colornames.Crimson)

} else {
screen.Fill(colornames.Deepskyblue)

}
}

● Let's go over it
● Ask any questions
● We can take a quick look at it

running
● https://github.com/jsantore/Si

mpleEbitenSound
●

https://github.com/jsantore/SimpleEbitenSound
https://github.com/jsantore/SimpleEbitenSound

 26

Other Sound Options

● Example just now is sound built into ebitengine, but for more control
there are other good options
– https://github.com/ebitengine/oto

● Newer player associated with (but not part of) ebitengine

– https://github.com/SolarLune/resound
● Give you more control over things like reverb and sound delays

https://github.com/ebitengine/oto
https://github.com/SolarLune/resound

 27

Collisions

● Collisions are vital for games
– Basically check to see if two images overlap each other.
– We will start with a very simple approach,

● Does any part of the first image overlap any part of the second image
● We will use resolv library this semester "github.com/solarlune/resolv"
● Library supports two approches, we’ll use simple one for this first pass

– Use intersection method on shape passing another shape
● Return value is a resolv.IntersectionSet object
● Could be empty
● Could contain the sub polygon of the intersection.

–

 28

Using this collision Library

● The two structs
– Let's look at this and

understand it.

type Enemy struct {
pict *ebiten.Image
collisionRect *resolv.ConvexPolygon
deltaX int

}

type PlayerData struct {
pict *ebiten.Image
collisionRect *resolv.ConvexPolygon

}

func checkPlayerCollision(game *scrollerGame) {
for _, baddie := range game.Enemies {

if hit :=
game.Player.collisionRect.Intersection(

baddie.collisionRect); !hit.IsEmpty() {
game.state = endState

}
}

}

 29

Drawing Text

● Ebitengine has a text v2 package for drawing text
– Be sure to use it and not the old v1 package that many AIs are generating.

● Lets talk fonts and faces
– What is what?

 30

Drawing Text

● Ebitengine has a text v2 package for drawing text
– Be sure to use it and not the old v1 package that many AIs are generating.

● Lets talk fonts and faces
– What is what?

● There are two font faces shipped in the go standard library
– Both are fairly small – lots of tutorials out there referencing them.

● We’ll look at using a ttf to create a face.
– Can find the demo at https://github.com/jsantore/MinimalEbitenFont

https://github.com/jsantore/MinimalEbitenFont

 31

To draw text – first load font
● Lets look at loading a font and

creating a face of the correct
font size
– Notice io.ReadAll instead of

depricated ioutil version
– Let’s walk through it.

func LoadFont(fontFile string, size float64) font.Face {
fileHandle, err := os.Open(fontFile)
if err != nil {

log.Fatal(err)
}
fontData, err := io.ReadAll(fileHandle)
if err != nil {

log.Fatal(err)
}
ttFont, err := opentype.Parse(fontData)
if err != nil {

log.Fatal(err)
}
fontFace, err := opentype.NewFace(ttFont,

&opentype.FaceOptions{
Size: size,
DPI: 72,
Hinting: font.HintingFull,

})
return fontFace

}

 32

The ‘game’ struct and two of the methods

● The game struct just has
– The text
– The font to draw the text

type textDemo struct {
text string
font font.Face

}

func (demo textDemo) Update() error {
return nil

}

func (demo textDemo) Layout(outsideWidth,
outsideHeight int)

(screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}

 33

main

● Here is the main
– I think it is pretty straightforward

after that last couple of weeks
– But I’ve been doing this longer

than you – so ask questions if
you have them.

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("Text Display Demo")
textFont := LoadFont("Square-Black.ttf", 100)
demo := textDemo{

text: "Hello World",
font: textFont,

}
err := ebiten.RunGame(&demo)
if err != nil {

log.Fatal(err)
}

}

 34

Finally: Draw

● Draw is where the interest is
– Ebitengine text vs requires

● GoXface

– text.DrawOptions
● Combines standard draw and

layout (which contains the
ColorScale that we see here)

● Finally text.Draw needs
– An ebiten image
– A string
– A goXFace
– The text.DrawOptions

func (demo textDemo) Draw(screen *ebiten.Image) {
drawFace := text.NewGoXFace(demo.font)
textOpts := &text.DrawOptions{

DrawImageOptions: ebiten.DrawImageOptions{},
LayoutOptions: text.LayoutOptions{},

}
textOpts.GeoM.Reset()
textOpts.GeoM.Translate(350, 450)
textOpts.ColorScale.ScaleWithColor(colornames.Red)
text.Draw(screen, demo.text, drawFace, textOpts)

}

 35

Now lets try

● Let’s put it all together
– Grab the BareBonesScroll from much earlier
– Let’s adjust it to so it puts up some start text until the user hits the space bar
– Then it shows the scrolling background

 36

There is the basics

● We have now seen all of the very basics that we need to build a
simple game (or at least a proto-game).

● Any questions?
● Let's look at our first game programming project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

