
Early Game Programming
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Admin

● Questions from last time?
●
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Game Programming

● Reminder from Day 1
– There are popular engines that will hide some of the details we'll look at here 

from you
● Unity/Unreal/Godot/etc

– Those are great but…..
● Just like you should see how data structures and searches/sorts work and implement 

them in Data Structures
– But once you get into the working world you would never implement them yourself
– You would use the versions in the standard library for the language you use

● By the same token I want you to understand the underlying concepts for game 
(especially 2D games)

● Even if you end up using these frameworks to hide some of that later.

– Also  - everything gets replaced 
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Movement

● How might we create movement
– Or the illusion of movement

● For the player in our 2D games?
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Movement

● How might we create movement
– Or the illusion of movement

● For the player in our 2D games?
– Move the player image in the window

● Like we did last time

– Move a background in the window
● And have the player image on top of it.
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Scroller Games

● Scroller games fairly straightforward to implement

● side/top scroller same principle
● create illusion of movement and continuity in direction of 

scrolling (side to side or top to bottom) by moving 
background.

● allow player sprite to move in other direction.
● firing varies.
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Two Scroller Techniques

● There are two easy scrolling background techniques

– In both cases the background is a sprite
– It is drawn before any of the foreground sprites.

● First use one big image

● Second use two identical images.
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Scrolling Background I

● Use one large image (specially crafted)

– image is three times as large as the screen/window
– Beginning and end thirds of the image are identical.
– Move the image across the window
– When the image is about to show window pixels, move it back to start 

position.



● Image credit:
● Game Programming

– By Harris 
● Published by Wiley
●



A second approach
● Another approach that works with nearly any image:

– Another approach to scrolling background 
– have two background instances and show them one after another
– no need to have identical parts of the image any more
– just need beginning and end of image to match

– sample:
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Lets try

● We will combine the two
– We'll use a background image 

repeated three times
– Draw on board if/as needed

● This will be our background image
– Note the green bits at the bottom 
– And the while clouds 
– Are all about the same height on left 

and right side of image.
● We'll see the clouds look a little funky
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Lets look at the code

package main

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
_ "image/png"

)

type scrollDemo struct {
player          *ebiten.Image
background      *ebiten.Image
backgroundXView int

}

● First imports and our game 
struct

● Mostly similar to last time
– We won't use the player in 

the first pass.

● Any questions?
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The Main function

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("Scroller Example")
//New image from file returns image as image.Image (_) and ebiten.Image
backgroundPict, _, err := 

ebitenutil.NewImageFromFile("background.png")
if err != nil {

fmt.Println("Unable to load background image:", err)
}

demo := scrollDemo{
player:     nil,
background: backgroundPict,

}
err = ebiten.RunGame(&demo)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Our main is also 
fairly similar to last 
time, 

● but let's look at it.
● Then any 

questions?
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Update and Layout

func (demo *scrollDemo) Update() error {
backgroundWidth := demo.background.Bounds().Dx()
maxX := backgroundWidth * 2
demo.backgroundXView -= 4
demo.backgroundXView %= maxX
return nil

}

func (s scrollDemo) Layout(outsideWidth, outsideHeight int) 
(screenWidth, screenHeight int) {

return outsideWidth, outsideHeight
}

● Layout same as before
● Update

– The max we want to scroll is 
2 times the size 

● (that will leave one copy on 
the screen)

– Move the image 4 pixels left
– If we have moved more than 

2 copies of the background 
over, then move it back to 
the beginning
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Draw

func (demo *scrollDemo) Draw(screen *ebiten.Image) {
drawOps := ebiten.DrawImageOptions{}
const repeat = 3
backgroundWidth := demo.background.Bounds().Dx()
for count := 0; count < repeat; count += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(backgroundWidth*count), 

float64(-1000))
drawOps.GeoM.Translate(float64(demo.backgroundXView), 0)
screen.DrawImage(demo.background, &drawOps)

}
}

● Draw the background 3 
times
– Move it off the top of the 

screen (image is 2k 
pixels tall)

– Move it horizontally first 
by its position in the three 
image roll

– Then by the amount 
calculated in update
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Lets take a look

● Let's put it all together and 
run it.

● https://github.com/jsantore/B
areBonesScroll

● I’ve updated it from the 
slides for full screen.

https://github.com/jsantore/BareBonesScroll
https://github.com/jsantore/BareBonesScroll
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Input

● It is all well and good to move an image on the screen
– And it is needed for games

● But without user input, it isn't really a game.
● So lets get some input

– Start with traditional laptop/desktop rather than controllers and touch

● So how will we get input?  
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Input

● It is all well and good to move an image on the screen
– And it is needed for games

● But without user input, it isn't really a game.
● So lets get some input

– Start with traditional laptop/desktop rather than controllers and touch

● So how will we get input?
– Mouse and keyboard first, let's start with mouse  
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Ebitengine InputUtil Module

● The functions you want are in the InputUtil package
● Mouse

– func IsMouseButtonJustPressed(button ebiten.MouseButton) bool
● returns a boolean value indicating whether the given mouse button is pressed just in the 

current tick.
● IsMouseButtonJustPressed must be called in a game's Update, not Draw.

– func IsMouseButtonJustReleased(button ebiten.MouseButton) bool
● IsMouseButtonJustReleased returns a boolean value indicating whether the given mouse 

button is released just in the current tick.
● IsMouseButtonJustReleased must be called in a game's Update, not Draw.

–  func MouseButtonPressDuration(button ebiten.MouseButton) int
● MouseButtonPressDuration returns how long the mouse button is pressed in ticks (Update).
● MouseButtonPressDuration must be called in a game's Update, not Draw. 
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Check Mouse Click

● The checkIfTargetClicked is 
called from Update

● The CursorPosition is in 
window coordinates

type Target struct {
pict  *ebiten.Image
dx    int
dy    int
x     int
y     int
count int

}

func checkIfTargetClicked(target Target) bool {
if inpututil.IsMouseButtonJustPressed(ebiten.MouseButton0) {

mouseX, mouseY := ebiten.CursorPosition()
goalWidth := target.pict.Bounds().Dx()
goalHeight := target.pict.Bounds().Dy()
if mouseX > target.x && mouseX < target.x+goalWidth &&

mouseY < target.y+goalHeight && mouseY > target.y 
{

return true
}

}
return false

}
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Keyboard Input

● Keyboard input is in two 
different modules

ebiten.IsKeyPressed(<key>)
– Returns true if <key> is pressed, 

false if it is not pressed

inpututil.IsKeyJustPressed(key)
– Returns true if <key> was 

pressed in this update cycle.

● Both must be called from 
update, not draw

● For example
func getPlayerInput(game *scrollerGame) {

if ebiten.IsKeyPressed(ebiten.KeyArrowUp) && 
game.Player.yLoc > 0 {

game.Player.yLoc -= 3
} else if ebiten.IsKeyPressed(ebiten.KeyArrowDown) &&

game.Player.yLoc < WINDOW_HEIGHT-
game.Player.pict.Bounds().Dy() {

game.Player.yLoc += 3
}
if inpututil.IsKeyJustPressed(ebiten.KeySpace) {

firePlayerShot(game)
}

}
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Sounds

● While we could have a game with just images,
– Sound is really vital
– Ebitengine has methods for playing sounds
– At first let's look at the simplest possible setup

● Playing a wav file that is in the same folder as the main project.

– Full demo
● https://github.com/jsantore/SimpleEbitenSound

– But we'll look at the vital/new pieces in the following slides.

https://github.com/jsantore/SimpleEbitenSound
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Sounds II

● In Ebitengine
– Playing sounds requires both 

● an audio.Context

– And
● And audio.Player

– All of the audio players can share a 
context if they need/want to.

– You need one player per sound.

● Imports and 'game' struct
import (

"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/audio"
"github.com/hajimehoshi/ebiten/v2/audio/wav"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"golang.org/x/image/colornames"
"os"

)

type soundDemo struct {
audioContext *audio.Context
soundPlayer  *audio.Player
counter      int

}
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Sounds III

● Create the context and sound 
player for the struct in main

func main() {
soundContext := audio.NewContext(SOUND_SAMPLE_RATE)
soundGame := soundDemo{

audioContext: soundContext,
soundPlayer:  LoadWav("Thunder1.wav", soundContext),
counter:      20,

}
ebiten.SetWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT)
ebiten.SetWindowTitle("Demo Simple Soundr")
err := ebiten.RunGame(&soundGame)
if err != nil {

}

} 

● Load the sound file
func LoadWav(name string, context *audio.Context) *audio.Player {

thunderFile, err := os.Open(name)
if err != nil {

fmt.Println("Error Loading sound: ", err)
}
thunderSound, err := 

wav.DecodeWithoutResampling(thunderFile)
if err != nil {

fmt.Println("Error interpreting sound file: ", err)
}
soundPlayer, err := context.NewPlayer(thunderSound)
if err != nil {

fmt.Println("Couldn't create sound player: ", err)
}
return soundPlayer

}
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Using the sounds

● Let's use the sound now
func (demo *soundDemo) Update() error {

demo.counter += 1
if inpututil.IsKeyJustPressed(ebiten.KeySpace) {

demo.soundPlayer.Rewind()
demo.soundPlayer.Play()
demo.counter = 0

}
return nil

}
func (s soundDemo) Draw(screen *ebiten.Image) {

if s.counter >= 20 {
screen.Fill(colornames.Crimson)

} else {
screen.Fill(colornames.Deepskyblue)

}
}

● Let's go over it 
● Ask any questions
● We can take a quick look at it 

running
● https://github.com/jsantore/Si

mpleEbitenSound
●

https://github.com/jsantore/SimpleEbitenSound
https://github.com/jsantore/SimpleEbitenSound
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Other Sound Options

● Example just now is sound built into ebitengine, but for more control 
there are other good options
– https://github.com/ebitengine/oto

● Newer player associated with (but not part of) ebitengine

– https://github.com/SolarLune/resound 
● Give you more control over things like reverb and sound delays

https://github.com/ebitengine/oto
https://github.com/SolarLune/resound
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Collisions

● Collisions are vital for games
– Basically check to see if two images overlap each other.
– We will start with a very simple approach, 

● Does any part of the first image overlap any part of the second image
● We will use resolv library this semester "github.com/solarlune/resolv"
● Library supports two approches, we’ll use simple one for this first pass

– Use intersection method on shape passing another shape
● Return value is a resolv.IntersectionSet object
● Could be empty
● Could contain the sub polygon of the intersection.

–
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Using this collision Library

● The two structs
– Let's look at this and 

understand it.

type Enemy struct {
pict          *ebiten.Image
collisionRect *resolv.ConvexPolygon
deltaX        int

}

type PlayerData struct {
pict          *ebiten.Image
collisionRect *resolv.ConvexPolygon

}

func checkPlayerCollision(game *scrollerGame) {
for _, baddie := range game.Enemies {

if hit := 
game.Player.collisionRect.Intersection(

baddie.collisionRect); !hit.IsEmpty() {
game.state = endState

}
}

}
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Drawing Text

● Ebitengine has a text v2 package for drawing text
– Be sure to use it and not the old v1 package that many AIs are generating.

● Lets talk fonts and faces
– What is what?
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Drawing Text

● Ebitengine has a text v2 package for drawing text
– Be sure to use it and not the old v1 package that many AIs are generating.

● Lets talk fonts and faces
– What is what?

● There are two font faces shipped in the go standard library
– Both are fairly small – lots of tutorials out there referencing them.

● We’ll look at using a ttf to create a face.
– Can find the demo at https://github.com/jsantore/MinimalEbitenFont 

https://github.com/jsantore/MinimalEbitenFont
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To draw text – first load font
● Lets look at loading a font and 

creating a face of the correct 
font size
– Notice io.ReadAll instead of 

depricated ioutil version
– Let’s walk through it.

func LoadFont(fontFile string, size float64) font.Face {
fileHandle, err := os.Open(fontFile)
if err != nil {

log.Fatal(err)
}
fontData, err := io.ReadAll(fileHandle)
if err != nil {

log.Fatal(err)
}
ttFont, err := opentype.Parse(fontData)
if err != nil {

log.Fatal(err)
}
fontFace, err := opentype.NewFace(ttFont, 

&opentype.FaceOptions{
Size:    size,
DPI:     72,
Hinting: font.HintingFull,

})
return fontFace

}
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The ‘game’ struct and two of the methods

● The game struct just has
– The text
– The font to draw the text

type textDemo struct {
text string
font font.Face

}

func (demo textDemo) Update() error {
return nil

}

func (demo textDemo) Layout(outsideWidth, 
outsideHeight int) 

(screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}
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main

● Here is the main
– I think it is pretty straightforward 

after that last couple of weeks
– But I’ve been doing this longer 

than you – so ask questions if 
you have them.

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("Text Display Demo")
textFont := LoadFont("Square-Black.ttf", 100)
demo := textDemo{

text: "Hello World",
font: textFont,

}
err := ebiten.RunGame(&demo)
if err != nil {

log.Fatal(err)
}

}
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Finally: Draw

● Draw is where the interest is
– Ebitengine text vs requires

● GoXface

– text.DrawOptions
● Combines standard draw and

layout (which contains the
ColorScale that we see here)

● Finally text.Draw needs
– An ebiten image
– A string
– A goXFace
– The text.DrawOptions

func (demo textDemo) Draw(screen *ebiten.Image) {
drawFace := text.NewGoXFace(demo.font)
textOpts := &text.DrawOptions{

DrawImageOptions: ebiten.DrawImageOptions{},
LayoutOptions:    text.LayoutOptions{},

}
textOpts.GeoM.Reset()
textOpts.GeoM.Translate(350, 450)
textOpts.ColorScale.ScaleWithColor(colornames.Red)
text.Draw(screen, demo.text, drawFace, textOpts)

}
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Now lets try 

● Let’s put it all together
– Grab the BareBonesScroll from much earlier
– Let’s adjust it to so it puts up some start text until the user hits the space bar
– Then it shows the scrolling background 
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There is the basics

● We have now seen all of the very basics that we need to build a 
simple game (or at least a proto-game).

● Any questions?
● Let's look at our first game programming project 
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