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Go Headline features

● Go (Sometimes calls Golang)

– Headline features:
● Compiled
● Statically typed

– Variable will always refer to same type of value

● Structurally Typed
– Type equivalence by definition not name

● Memory safe
– No buffer overflows, unsafe pointer operations

● Garbage collected
● Focus on concurrency

–    One of Go’s claims to fame – but less important to early game work
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First Imressions of Go

● When I first looked at Go 

– It looked like python and C++ had a baby
– Of course I don’t know algol

● Python philosophy :

– There is one ‘right’ way to do things
– (harder to see recently)
– This is pythonic, but not enforced by compiler/interpreter.

● With go – often is enforced by compiler 
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Good Style
● Go ‘Good Style’ is often compiler enforced

– Unused local variables are a compiler error

– Unused imports are a compiler error
● Online flame wars are often about what “good style” is

● Go often settles these by making the compiler only work for the approved style

● Go helps you be compile ready with gofmt

– Can run on command line 
● Or let goland do it for you.

– Gofmt pronunciation
● Do you go with the majority?
● Or with the crusading minority?

– Gofmt sort of like python-black
● Simply rewrites your code to be ‘proper’ (idiomatic) go
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Go Programming

● Let’s look at a few basic 
programming concepts in go
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Comments and Types

● Comments are really useful 
when learning a language

● Comments in Go same as C++

– Go took them just like java did
– // line comments
– /* 
– Multiline comments
– */
–

● Go, like java, has distinction 
between basic types and all 
other types

● Basic types:

– boolean
– string 
– and number (several number 

types)
● uint8, uint16, uint32, uint64, 

int8, int16, int32 and int64, etc
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Variables and 

● In the other column, var3 is 
clearly what (not the type but 
the value)?

● Variables are statically typed, 
but type can be inferred

– var name string //creates a 
new variable called name of 
type string with an empty 
string

– var name2 = “Imelda” 
//creates a new variable 
called name2 of type string 
with initial value “Imelda”

– var num1, num2 int = 100, 300
– var3 :=3.14159
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Variables and Constants 

● In the other column, var3 is clearly 
what?

● Pi right? So it really shouldn’t be a 
variable

● Constants in go, more like C++ 
than python

– const pi = 3.14159 //math.Pi is better
– can’t be changed
– Notice constant is mixed case

● Most languages have upper case.
● Why? (class discussion)

● Variables are statically typed, 
but type can be inferred

– var name string //creates a 
new variable called name of 
type string with an empty 
string

– var name2 = “Imelda” 
//creates a new variable 
called name2 of type string 
with initial value “Imelda”

– var num1, num2 int = 100, 300
– var3 :=3.14159
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Functions

● Create a function in go using 
keyword func, 
– func <function name>(<param list>) 

<ret type>{
● <function body>
● }

– A few things to look at here:
● Return type is after param list 

(unlike java/c/C++, but like 
python/swift)

● Param list can be empty, when not, 
param name first then type

● And that opening brace? It must be 
there. Compile error for being on 
next line.

– Avoids one of the favorite java flame 
wars

● Example

func main() {
fmt.Println("Hello Game Design Class \u2665 🦍")

}

– Main function in main package is entry point of go 
program

– fmt package has lots of functions to print and build 
strings.

– Strings can contain emoji ‘runes’ (characters) 
natively

● Function returning value
– func add(x int, y int) int {

● return x + y

– }
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Import
● Like most languages, if you want code beyond the always available basics, must 

import

● In previous slide imports to needed use code from other packages (like fmt)

– And their exported symbols
● Import a single package

– import “fmt”
● More commonly, import multiple packages

● import (
"fmt"
"log"
"net/http"

)

● Important: an unused imported library is a compile error

– gofmt to the rescue – run automatically by goland 
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Structs
● Go doesn’t have classes, it has structs

– If you squint hard enough they look like 
c-structs

– A collection of named typed fields

– Eg:
– type Player struct {

name string
health int
jumpDistance int

}

– Creates a struct type with 3 fields, 
● var player1 Player //creates a variable 

player1 of type Player with zero value 
for the fields

– Access fields in a C-like manner

● player1.jumpDistance = 3

● Another example struct
type firstGame struct {

player *ebiten.Image
xloc int
yloc int
score int

}



  12

Methods

● What is the difference between 
methods and function in a 
language like python or java? 
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Methods

● What is the difference between 
methods and function? 
– You call methods on an object
– You just call functions with 

parameters.

● Go has methods, you call them 
on struct objects

● Unlike these other languages, 
you don’t need to write all of the 
methods for a type together
– But maybe you should.

● Method syntax
– func (object ) <function name> (<parameter list) 

(return list){
● Function body

– }

● For example
// Layout will return the screen dimensions.
func (g *Game) Layout(width, height int) (int, int) {

 return width, height }
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Interfaces

● Interfaces in go work kinda like 
those in java
– In that they specify a set of 

methods that must be 
implemented to implement the 
interface

– But can be written anywhere in 
the package.

● This is a copy of the ebiten.Game 
interface from the library 
– (with all of the original comments 

removed so it fits on the slide)
type Game interface {

Update() error

Draw(screen *ebiten.Image)

Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int)
}

– Any struct with these three 
methods can be used as a game 
object 
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The beginning of our first Game
package main

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"golang.org/x/image/colornames"

)
type firstGame struct {

player *ebiten.Image
xloc   int
yloc   int
score  int

}
func main() {

ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
ourGame := firstGame{} //we will use the zero value for now
err := ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

Let's walk through the code here 
And on the next slide so we all 
understand it.
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So let’s try to make that minimal Game

● Lets put together the simplest of these three
● Let’s go over here – and run it.

func (game *firstGame) Update() error {
return nil

}

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)

}

func (game firstGame) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight //by default, just return the current dimensions

}
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Ok – now what

● Ok, that was our ebitengine 
'Hello world" now what

● 2D games are what at their root? 
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Ok – now what

● Ok, that was our ebitengine 
'Hello world" now what

● 2D games are what at their root?
– Draw some images
– Move some of the images around 

on the screen (according to the 
game design)

–  See if any of them overlap
– So first lets get an image we can 

use

● The easiest way to get an image
● ebitenutil.NewImageFromFile

– We'll use more robust approaches 
later

– Get the png image we'll use for this 
demo

– We need to load the png image 
processing library (even though we 
don't use it NewImage from file 
does)

– Add to your imports
                    _ "image/png"     that underscore is important!!!!
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Main with an image loaded

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
//New image from file returns image as image.Image (_) and ebiten.Image
playerPict, _, err := ebitenutil.NewImageFromFile("ship.png")
if err != nil {

fmt.Println("Unable to load image:", err)
}
ourGame := firstGame{player: playerPict,

xloc: 500, yloc: 500}
err = ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Lets look at it 
and ask 
questions

● Then run it (and 
ask more 
questions)
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Main with an image loaded

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
//New image from file returns image as image.Image (_) and ebiten.Image
playerPict, _, err := ebitenutil.NewImageFromFile("ship.png")
if err != nil {

fmt.Println("Unable to load image:", err)
}
ourGame := firstGame{player: playerPict,

xloc: 500, yloc: 500}
err = ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Lets look at it 
and ask 
questions

● Then run it
● Aaand we see 

nothing has 
changed
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Draw

● So now let's draw the image
● First we create the draw options 

struct
– We can use one to draw multiple 

images in the future, so 
traditionally call reset before each 
one

– Then translate the options to the 
image location

– Finally draw the image on the 
screen

● Let's see it work

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc), 

float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}
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GameLoop

● In computer games there is always a 'game loop'
– Sometimes the library/framework provides it

● unity/python arcade/etc

– Sometimes you need to build it 
● Eg python's pygame

● Game loop needs to at least let all game objects update and then draw 
on screen.
– All modern libraries/frameworks are 'double buffered' draw to an off screen 

buffer and then show all at once

● Ebitengine has the game loop in 'RunGame'
– Which calls Update, Draw and  Layout
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Update pass 1

● Update gets called in the 
game loop
– Which runs about 60 times 

per second
– So our first update will just 

move the ship one pixel over
– Let's try this one out.

func (game *firstGame) Update() error {
game.xloc += 1
return nil

}
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Update pass 1

● Update gets called in the 
game loop
– Which runs about 60 times 

per second
– So our first update will just 

move the ship one pixel over
– Let's try this one out.

● Hmmm, it looks like we have 
trouble

func (game *firstGame) Update() error {
game.xloc += 1
return nil

}
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Selection in Go

● Selection in Go (AKA if)
– if <condition/Boolean>{

● <do this if true>
● }

● Or
– if <condition/Boolean>{

● <do this if true>
● }else{
● <do this if false>
● }

–  No parens around condition, but must have braces {} around body even if 
one line
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Statements

● How does a java statement 
end?
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Statements

● How does a python 
statement end?
–
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Statements

● How does a python 
statement end?
– With the end of the line 

except for special 
circumstances
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Go Statements

● How Does a go Statement end?
● Reminder:
● package main

import (
"fmt"
"io/ioutil"
"log"
"net/http"

)
func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err != nil{
log.Fatal(err)
}
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err != nil{
log.Fatal(err)
}
fmt.Print(string(dataAsBytes))

}

● Code is a mangling of https://www.devdungeon.com/content/web-scraping-go
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Go Statements
● How Does a go Statement end?
● Reminder:
● package main

import (
"fmt"
"io/ioutil"
"log"
"net/http"

)
func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err != nil{

log.Fatal(err)
}
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err != nil{

log.Fatal(err)
}
fmt.Print(string(dataAsBytes))

}

● More like python
– End of line except for special circumstances
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Selection II

● A more complicated selection example
– if num := 9; num < 0 {
–         fmt.Println(num, "is negative")
–     } else if num < 10 {
–         fmt.Println(num, "has 1 digit")
–     } else {
–         fmt.Println(num, "has multiple digits")
–     }

● Notice two statements in first condition
– Also variables created in condition are available in all later branches
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Back to update

● How could we change update to make sure the image stays on the 
screen?
– Let's just loop the image back to the other side rather than reversing it.
– Let's do that now
– For example we might

func (game *firstGame) Update() error {
game.xloc += 1
if game.xloc > 1000{

game.xloc = 0
}
return nil

}
– Possibly clean up to adjust for image size – or leave that for later
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Repetition in Go

● In programming theory, two 
types of repetition, definite 
and indefinite

– For and while in most 
languages

● Go has only for – which it 
uses for both
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Basic Go for loop

● Basic for loop looks a lot like C-like language for loop
● func countDown(start int){ //in honor of starship launch

for counter := start; counter >0; counter--{
fmt.Println(counter)

}
fmt.Println("blastoff")

}

● Again 

– no parens around setup, but required braces
– Scope of variables created in initialization statement only that for-loop 



  35

For with only condition

● You can omit the initialization and post 
part of the for (not the condition)

– makes it functionally what other languages 
use while

– func main() {
● sum := 1
● for ; sum < 1000; {
● sum += sum
● }
● fmt.Println(sum)

– } //From 
https://tour.golang.org/flowcontr
ol/2

– Semi colons are optional – 
can be dropped

– func main() {
● sum := 1
● for sum < 1000 {
● sum += sum
● }
● fmt.Println(sum)

– }
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The Forever loop

● Since there is no while,
– Can't have a while True

● Go has something they pronounce "for ever"
● for{

● //Do something forever

● //or at least till we hit a break statement

● } 
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Let's use a for loop 

● Let's add a for loop 
in draw to draw 
three ships instead 
of one.
– Adjust the hard 

coded 'magic 
number' 50 as 
needed for image

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
for i := 0; i < 3; i += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc-50*i), 

float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}

}
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Arrays in Go

● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data structure
● Must declare type and size at compile time

– Eg:
● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”, 
“u”}

– Array size is part of the type in go
● And Go is a strongly typed language
● So what does this mean for parameters in functions?
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Arrays in Go
● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data structure
● Must declare type and size at compile time

– Eg:
● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”, 
“u”}

– Array size is part of the type in go
● And Go is a strongly typed language
● So what does this mean for parameters in functions?
● You need a different function for every size of array if you take an array. These 

differ:
– func reverse(ptr *[8]int){…
– func reverse(ptr *[16]int){...
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Slices

● Arrays are great, but limited, no growth, typing is difficult

● So Go says: ‘use slices’

– In Go slices are a “view” into a sequence data
● Usually arrays, but also strings

– Every slice has an array under it, but slices grow and have 
variable size.

– Every slice has:
● pointer to an array element (first item in slice)
● len (how many elements in slice
● cap (how many elements till end of underlying array)  
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Slices II

● Create an empty slice:

– var emptySlice []int
– len is 0; emptySlice == nil

● Create a slice with lots of zero values using make
●           names := make([]string, 5, 10)

– Makes a sequence of type <first param> with len <second param> and 
capacity <third param>

● If cap isn’t specified, len and cap are same

– Going past len in a slice expands the slice
– Going past cap, causes panic
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So let's put in a slice of stuff into our demo

● We will use a slice of coin piles to show this
● Our coinPile struct              

type coinPile struct {
pict *ebiten.Image
xloc int
yloc int

}

● And updated game struct

type firstGame struct {
player    *ebiten.Image
xloc      int
yloc      int
score     int
treasures []coinPile

} 
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A new function to create coin piles

● I want to put coin piles all over the 
screen

func NewCoins(MaxWidth, MaxHeight int, pict *ebiten.Image) 
coinPile {

return coinPile{
pict: pict,
xloc: rand.Intn(MaxWidth),
yloc: rand.Intn(MaxHeight),

}
}

● Summary:
– create a struct
– Use standard library function 

to randomly assign x,y 
coordinates inside the 
screen.

– No need for random seed if 
the go version is >= 1.20
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Update main

● Lets add these lines to main - ask if you have questions
pict, _, err := ebitenutil.NewImageFromFile("coins.png")
if err != nil {

fmt.Println("Failed to load image", err)
}
allTreasures := make([]coinPile, 0, 15)
for i := 0; i < 10; i += 1 {

allTreasures = append(allTreasures, NewCoins(1000, 1000, pict))
}
ourGame := firstGame{player: playerPict,

xloc:      500,
yloc:      500,
treasures: allTreasures,

}
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Removing things from a slice 

● To remove an item from a slice
– Take the first part of the slice up to 

the item to remove
– And last part of the slice after the 

item to remove
– Use append function to put them 

together.
– append takes a slice, and a bunch 

of stuff to put at the end of the slice
– … operator right after a slice will 

unpack a slice into its elements.

If the item to remove is at position i in the slice

game.playerShots := append(game.playerShots[:i], 
game.playerShots[i+1:]...)
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For-each loop

● Python (and modern Java) have a 'for each' loop, to iterate over a 
collection 
– In go use a for range(<collection>) syntax
– Syntax

● for index, item := range collection{
– //do something

● }
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Update draw

● Let's update draw to draw each pile in the slide
func (game *firstGame) Draw(screen *ebiten.Image) {

screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
for i := 0; i < 3; i += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc-50*i), float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}
for _, pile := range game.treasures {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(pile.xloc), float64(pile.yloc))
screen.DrawImage(pile.pict, &drawOps)

}
}

The new part
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Strings

● We've used strings (in reporting errors if nothing else)
● Strings are officially “an immutable sequence of bytes”

– Can contain 0 (null byte)
– Usually interpreted as UTF-8 (unicode) 
– Utf-8 characters are called ‘runes’ 
– len(string) returns number of bytes not runes
– Use utf8.RuneCountInString(<string>) to find out how many characters 

are in string.
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Strings II

● Since strings are immutable
– How do we build a string with values in it?
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Strings II

● Since strings are immutable
– How do we build a string with values in it?
– Either with StringBuilder class from standard library
– Or fmt.Sprintf

● e.g.
● Now if g.Score has a value of 3, then scoreString has a value of Score: 3

      scoreString := fmt.Sprintf("Score: %d", g.Score)
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Let's look at it all together

● Let's look at our little demo
● All together.
● Ask lots of questions
● Is there anything else you need 

to know about go?
● We will continue using go and 

ebitengine to build first 
protogames, and then games 
themselves
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