
Go for Game Programmers

 2

Go Headline features

● Go (Sometimes calls Golang)

– Headline features:
● Compiled
● Statically typed

– Variable will always refer to same type of value

● Structurally Typed
– Type equivalence by definition not name

● Memory safe
– No buffer overflows, unsafe pointer operations

● Garbage collected
● Focus on concurrency

– One of Go’s claims to fame – but less important to early game work

 3

First Imressions of Go

● When I first looked at Go

– It looked like python and C++ had a baby
– Of course I don’t know algol

● Python philosophy :

– There is one ‘right’ way to do things
– (harder to see recently)
– This is pythonic, but not enforced by compiler/interpreter.

● With go – often is enforced by compiler

 4

Good Style
● Go ‘Good Style’ is often compiler enforced

– Unused local variables are a compiler error

– Unused imports are a compiler error
● Online flame wars are often about what “good style” is

● Go often settles these by making the compiler only work for the approved style

● Go helps you be compile ready with gofmt

– Can run on command line
● Or let goland do it for you.

– Gofmt pronunciation
● Do you go with the majority?
● Or with the crusading minority?

– Gofmt sort of like python-black
● Simply rewrites your code to be ‘proper’ (idiomatic) go

 5

Go Programming

● Let’s look at a few basic
programming concepts in go

 6

Comments and Types

● Comments are really useful
when learning a language

● Comments in Go same as C++

– Go took them just like java did
– // line comments
– /*
– Multiline comments
– */
–

● Go, like java, has distinction
between basic types and all
other types

● Basic types:

– boolean
– string
– and number (several number

types)
● uint8, uint16, uint32, uint64,

int8, int16, int32 and int64, etc

 7

Variables and

● In the other column, var3 is
clearly what (not the type but
the value)?

● Variables are statically typed,
but type can be inferred

– var name string //creates a
new variable called name of
type string with an empty
string

– var name2 = “Imelda”
//creates a new variable
called name2 of type string
with initial value “Imelda”

– var num1, num2 int = 100, 300
– var3 :=3.14159

 8

Variables and Constants

● In the other column, var3 is clearly
what?

● Pi right? So it really shouldn’t be a
variable

● Constants in go, more like C++
than python

– const pi = 3.14159 //math.Pi is better
– can’t be changed
– Notice constant is mixed case

● Most languages have upper case.
● Why? (class discussion)

● Variables are statically typed,
but type can be inferred

– var name string //creates a
new variable called name of
type string with an empty
string

– var name2 = “Imelda”
//creates a new variable
called name2 of type string
with initial value “Imelda”

– var num1, num2 int = 100, 300
– var3 :=3.14159

 9

Functions

● Create a function in go using
keyword func,
– func <function name>(<param list>)

<ret type>{
● <function body>
● }

– A few things to look at here:
● Return type is after param list

(unlike java/c/C++, but like
python/swift)

● Param list can be empty, when not,
param name first then type

● And that opening brace? It must be
there. Compile error for being on
next line.

– Avoids one of the favorite java flame
wars

● Example

func main() {
fmt.Println("Hello Game Design Class \u2665 🦍")

}

– Main function in main package is entry point of go
program

– fmt package has lots of functions to print and build
strings.

– Strings can contain emoji ‘runes’ (characters)
natively

● Function returning value
– func add(x int, y int) int {

● return x + y

– }

 10

Import
● Like most languages, if you want code beyond the always available basics, must

import

● In previous slide imports to needed use code from other packages (like fmt)

– And their exported symbols
● Import a single package

– import “fmt”
● More commonly, import multiple packages

● import (
"fmt"
"log"
"net/http"

)

● Important: an unused imported library is a compile error

– gofmt to the rescue – run automatically by goland

 11

Structs
● Go doesn’t have classes, it has structs

– If you squint hard enough they look like
c-structs

– A collection of named typed fields

– Eg:
– type Player struct {

name string
health int
jumpDistance int

}

– Creates a struct type with 3 fields,
● var player1 Player //creates a variable

player1 of type Player with zero value
for the fields

– Access fields in a C-like manner

● player1.jumpDistance = 3

● Another example struct
type firstGame struct {

player *ebiten.Image
xloc int
yloc int
score int

}

 12

Methods

● What is the difference between
methods and function in a
language like python or java?

 13

Methods

● What is the difference between
methods and function?
– You call methods on an object
– You just call functions with

parameters.

● Go has methods, you call them
on struct objects

● Unlike these other languages,
you don’t need to write all of the
methods for a type together
– But maybe you should.

● Method syntax
– func (object) <function name> (<parameter list)

(return list){
● Function body

– }

● For example
// Layout will return the screen dimensions.
func (g *Game) Layout(width, height int) (int, int) {

 return width, height }

 14

Interfaces

● Interfaces in go work kinda like
those in java
– In that they specify a set of

methods that must be
implemented to implement the
interface

– But can be written anywhere in
the package.

● This is a copy of the ebiten.Game
interface from the library
– (with all of the original comments

removed so it fits on the slide)
type Game interface {

Update() error

Draw(screen *ebiten.Image)

Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int)
}

– Any struct with these three
methods can be used as a game
object

 15

The beginning of our first Game
package main

import (
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"golang.org/x/image/colornames"

)
type firstGame struct {

player *ebiten.Image
xloc int
yloc int
score int

}
func main() {

ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
ourGame := firstGame{} //we will use the zero value for now
err := ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

Let's walk through the code here
And on the next slide so we all
understand it.

 16

So let’s try to make that minimal Game

● Lets put together the simplest of these three
● Let’s go over here – and run it.

func (game *firstGame) Update() error {
return nil

}

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)

}

func (game firstGame) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight //by default, just return the current dimensions

}

 17

Ok – now what

● Ok, that was our ebitengine
'Hello world" now what

● 2D games are what at their root?

 18

Ok – now what

● Ok, that was our ebitengine
'Hello world" now what

● 2D games are what at their root?
– Draw some images
– Move some of the images around

on the screen (according to the
game design)

– See if any of them overlap
– So first lets get an image we can

use

● The easiest way to get an image
● ebitenutil.NewImageFromFile

– We'll use more robust approaches
later

– Get the png image we'll use for this
demo

– We need to load the png image
processing library (even though we
don't use it NewImage from file
does)

– Add to your imports
 _ "image/png" that underscore is important!!!!

 19

Main with an image loaded

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
//New image from file returns image as image.Image (_) and ebiten.Image
playerPict, _, err := ebitenutil.NewImageFromFile("ship.png")
if err != nil {

fmt.Println("Unable to load image:", err)
}
ourGame := firstGame{player: playerPict,

xloc: 500, yloc: 500}
err = ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Lets look at it
and ask
questions

● Then run it (and
ask more
questions)

 20

Main with an image loaded

func main() {
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("First Class Example")
//New image from file returns image as image.Image (_) and ebiten.Image
playerPict, _, err := ebitenutil.NewImageFromFile("ship.png")
if err != nil {

fmt.Println("Unable to load image:", err)
}
ourGame := firstGame{player: playerPict,

xloc: 500, yloc: 500}
err = ebiten.RunGame(&ourGame)
if err != nil {

fmt.Println("Failed to run game", err)
}

}

● Lets look at it
and ask
questions

● Then run it
● Aaand we see

nothing has
changed

 21

Draw

● So now let's draw the image
● First we create the draw options

struct
– We can use one to draw multiple

images in the future, so
traditionally call reset before each
one

– Then translate the options to the
image location

– Finally draw the image on the
screen

● Let's see it work

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc),

float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}

 22

GameLoop

● In computer games there is always a 'game loop'
– Sometimes the library/framework provides it

● unity/python arcade/etc

– Sometimes you need to build it
● Eg python's pygame

● Game loop needs to at least let all game objects update and then draw
on screen.
– All modern libraries/frameworks are 'double buffered' draw to an off screen

buffer and then show all at once

● Ebitengine has the game loop in 'RunGame'
– Which calls Update, Draw and Layout

 23

Update pass 1

● Update gets called in the
game loop
– Which runs about 60 times

per second
– So our first update will just

move the ship one pixel over
– Let's try this one out.

func (game *firstGame) Update() error {
game.xloc += 1
return nil

}

 24

Update pass 1

● Update gets called in the
game loop
– Which runs about 60 times

per second
– So our first update will just

move the ship one pixel over
– Let's try this one out.

● Hmmm, it looks like we have
trouble

func (game *firstGame) Update() error {
game.xloc += 1
return nil

}

 25

Selection in Go

● Selection in Go (AKA if)
– if <condition/Boolean>{

● <do this if true>
● }

● Or
– if <condition/Boolean>{

● <do this if true>
● }else{
● <do this if false>
● }

– No parens around condition, but must have braces {} around body even if
one line

 26

Statements

● How does a java statement
end?

 27

Statements

● How does a python
statement end?
–

 28

Statements

● How does a python
statement end?
– With the end of the line

except for special
circumstances

 29

Go Statements

● How Does a go Statement end?
● Reminder:
● package main

import (
"fmt"
"io/ioutil"
"log"
"net/http"

)
func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err != nil{
log.Fatal(err)
}
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err != nil{
log.Fatal(err)
}
fmt.Print(string(dataAsBytes))

}

● Code is a mangling of https://www.devdungeon.com/content/web-scraping-go

 30

Go Statements
● How Does a go Statement end?
● Reminder:
● package main

import (
"fmt"
"io/ioutil"
"log"
"net/http"

)
func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err != nil{

log.Fatal(err)
}
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err != nil{

log.Fatal(err)
}
fmt.Print(string(dataAsBytes))

}

● More like python
– End of line except for special circumstances

 31

Selection II

● A more complicated selection example
– if num := 9; num < 0 {
– fmt.Println(num, "is negative")
– } else if num < 10 {
– fmt.Println(num, "has 1 digit")
– } else {
– fmt.Println(num, "has multiple digits")
– }

● Notice two statements in first condition
– Also variables created in condition are available in all later branches

 32

Back to update

● How could we change update to make sure the image stays on the
screen?
– Let's just loop the image back to the other side rather than reversing it.
– Let's do that now
– For example we might

func (game *firstGame) Update() error {
game.xloc += 1
if game.xloc > 1000{

game.xloc = 0
}
return nil

}
– Possibly clean up to adjust for image size – or leave that for later

 33

Repetition in Go

● In programming theory, two
types of repetition, definite
and indefinite

– For and while in most
languages

● Go has only for – which it
uses for both

 34

Basic Go for loop

● Basic for loop looks a lot like C-like language for loop
● func countDown(start int){ //in honor of starship launch

for counter := start; counter >0; counter--{
fmt.Println(counter)

}
fmt.Println("blastoff")

}

● Again

– no parens around setup, but required braces
– Scope of variables created in initialization statement only that for-loop

 35

For with only condition

● You can omit the initialization and post
part of the for (not the condition)

– makes it functionally what other languages
use while

– func main() {
● sum := 1
● for ; sum < 1000; {
● sum += sum
● }
● fmt.Println(sum)

– } //From
https://tour.golang.org/flowcontr
ol/2

– Semi colons are optional –
can be dropped

– func main() {
● sum := 1
● for sum < 1000 {
● sum += sum
● }
● fmt.Println(sum)

– }

 36

The Forever loop

● Since there is no while,
– Can't have a while True

● Go has something they pronounce "for ever"
● for{

● //Do something forever

● //or at least till we hit a break statement

● }

 37

Let's use a for loop

● Let's add a for loop
in draw to draw
three ships instead
of one.
– Adjust the hard

coded 'magic
number' 50 as
needed for image

func (game *firstGame) Draw(screen *ebiten.Image) {
screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
for i := 0; i < 3; i += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc-50*i),

float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}

}

 38

Arrays in Go

● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data structure
● Must declare type and size at compile time

– Eg:
● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”,
“u”}

– Array size is part of the type in go
● And Go is a strongly typed language
● So what does this mean for parameters in functions?

 39

Arrays in Go
● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data structure
● Must declare type and size at compile time

– Eg:
● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”,
“u”}

– Array size is part of the type in go
● And Go is a strongly typed language
● So what does this mean for parameters in functions?
● You need a different function for every size of array if you take an array. These

differ:
– func reverse(ptr *[8]int){…
– func reverse(ptr *[16]int){...

 40

Slices

● Arrays are great, but limited, no growth, typing is difficult

● So Go says: ‘use slices’

– In Go slices are a “view” into a sequence data
● Usually arrays, but also strings

– Every slice has an array under it, but slices grow and have
variable size.

– Every slice has:
● pointer to an array element (first item in slice)
● len (how many elements in slice
● cap (how many elements till end of underlying array)

 41

Slices II

● Create an empty slice:

– var emptySlice []int
– len is 0; emptySlice == nil

● Create a slice with lots of zero values using make
● names := make([]string, 5, 10)

– Makes a sequence of type <first param> with len <second param> and
capacity <third param>

● If cap isn’t specified, len and cap are same

– Going past len in a slice expands the slice
– Going past cap, causes panic

 42

So let's put in a slice of stuff into our demo

● We will use a slice of coin piles to show this
● Our coinPile struct

type coinPile struct {
pict *ebiten.Image
xloc int
yloc int

}

● And updated game struct

type firstGame struct {
player *ebiten.Image
xloc int
yloc int
score int
treasures []coinPile

}

 43

A new function to create coin piles

● I want to put coin piles all over the
screen

func NewCoins(MaxWidth, MaxHeight int, pict *ebiten.Image)
coinPile {

return coinPile{
pict: pict,
xloc: rand.Intn(MaxWidth),
yloc: rand.Intn(MaxHeight),

}
}

● Summary:
– create a struct
– Use standard library function

to randomly assign x,y
coordinates inside the
screen.

– No need for random seed if
the go version is >= 1.20

 44

Update main

● Lets add these lines to main - ask if you have questions
pict, _, err := ebitenutil.NewImageFromFile("coins.png")
if err != nil {

fmt.Println("Failed to load image", err)
}
allTreasures := make([]coinPile, 0, 15)
for i := 0; i < 10; i += 1 {

allTreasures = append(allTreasures, NewCoins(1000, 1000, pict))
}
ourGame := firstGame{player: playerPict,

xloc: 500,
yloc: 500,
treasures: allTreasures,

}

 45

Removing things from a slice

● To remove an item from a slice
– Take the first part of the slice up to

the item to remove
– And last part of the slice after the

item to remove
– Use append function to put them

together.
– append takes a slice, and a bunch

of stuff to put at the end of the slice
– … operator right after a slice will

unpack a slice into its elements.

If the item to remove is at position i in the slice

game.playerShots := append(game.playerShots[:i],
game.playerShots[i+1:]...)

 46

For-each loop

● Python (and modern Java) have a 'for each' loop, to iterate over a
collection
– In go use a for range(<collection>) syntax
– Syntax

● for index, item := range collection{
– //do something

● }

 47

Update draw

● Let's update draw to draw each pile in the slide
func (game *firstGame) Draw(screen *ebiten.Image) {

screen.Fill(colornames.Blanchedalmond)
drawOps := ebiten.DrawImageOptions{}
for i := 0; i < 3; i += 1 {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(game.xloc-50*i), float64(game.yloc))
screen.DrawImage(game.player, &drawOps)

}
for _, pile := range game.treasures {

drawOps.GeoM.Reset()
drawOps.GeoM.Translate(float64(pile.xloc), float64(pile.yloc))
screen.DrawImage(pile.pict, &drawOps)

}
}

The new part

 48

Strings

● We've used strings (in reporting errors if nothing else)
● Strings are officially “an immutable sequence of bytes”

– Can contain 0 (null byte)
– Usually interpreted as UTF-8 (unicode)
– Utf-8 characters are called ‘runes’
– len(string) returns number of bytes not runes
– Use utf8.RuneCountInString(<string>) to find out how many characters

are in string.

 49

Strings II

● Since strings are immutable
– How do we build a string with values in it?

 50

Strings II

● Since strings are immutable
– How do we build a string with values in it?
– Either with StringBuilder class from standard library
– Or fmt.Sprintf

● e.g.
● Now if g.Score has a value of 3, then scoreString has a value of Score: 3

 scoreString := fmt.Sprintf("Score: %d", g.Score)

 51

Let's look at it all together

● Let's look at our little demo
● All together.
● Ask lots of questions
● Is there anything else you need

to know about go?
● We will continue using go and

ebitengine to build first
protogames, and then games
themselves

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

