Farming out Map Collisions

* Quizzes
* Schedule
* Questions?

Admin

D,

Tiles and collisions

[N

| was asked a while ago how we could automate/outsource our
collision checks when using a tiled map

I've used a library for this last fall on sabbatical for a bigger project
- So | figured — sure we can do that

Unfortunately it went public archive in November
- But we’ll use it anyway.

https://github.com/setanarut/tilecollider

https://github.com/setanarut/tilecollider

TileCollider

* This library is intended to work with ebitengine

- But was not necessarily designed to work with the go-tiled library
* So we will have to make some adjustements

TileCollider and go-tiled

* Adjustment 1:
- go-tiled unrolls the map into a 1d slice of map tiles
- TileCollider wants a slice of slices (a 2d array if you will)
- S0 we need to build the 2d slice from the unrolled 1d slice (reroll it)

TileCollider and go-tiled

* Adjustment 2:

- go-tiled auto adjusts the map tilelDs so that the tile listed as ‘1’ in the map
file is represented as ‘0’ in the 1D slice representing the map
* And otherwise has an off by one issue 2 becomes 1 and so on

- TileCollider wants all traversable tiles to be ‘0’ while non-traversable tiles
can be any positive integer

- S0 we need to adjust the numbers as we parse the file and build the
TileCollider part of the map

Demo Start

* To demo a tile collider, | need a tiled map to start with

- | began with the demo of a tiled map that gets painted on to a single image
e https://github.com/shinjitsu/MapDemoOnelmage

- Which we have already worked through
- So I'll start with that and only look at what is new

https://github.com/shinjitsu/MapDemoOneImage

The Structs

N
» Game struct gets two new fields
_ PUNE type mapGame struct {
Highlighted Level *tiled.Map
* New p|ayer struct tileHash ~ map[uint32]*ebiten.Image

_ g h to h drawableLevel *ebiten.Image
Ince we have to have collider *tilecollider.Collider[int]

something to collide demoPlayer player
}

type player struct {
X, y float64
pict *ebiten.Image

func makeCollideMap(gameMap *tiled.Map) [1[]int {
//here my map has one layer, in a more realistic example I might have the ~
//0 layer be the ground and then the next layer have only the obstacles &
//the tilemap is unrolled, with the 2d array unrolled into a 1d array [N
//we have to convert it to a 2d array for the tilecollider to work
var mapAsIntSlice [][]int = make([1[]Jint, gameMap.Height)
for tileY := 0; tileY < gameMap.Height; tileY += 1 {
//get each row of tiles
mapAsIntSlice[tileY] = make([]int, gameMap.Width)
for tileX := 0; tileX < gameMap.Width; tileX += 1 {
mapTileID := int(gameMap.Layers[0].Tiles[tileY*gameMap.Width+tileX].ID)
//the tile collider wants 0 for all open tiles and non-zero for all obstacles
//I want the brown tiles to be the obstacles, in the map they are 1 and 4, because of the
//way the tiled library adjusts by one, they will be 0 and 3 in the array
//those will be zero, the rest will be 1
if mapTileID ==0 | | mapTileID == 3 {

mapTileID =1
} else {
mapTileID =0

}
mapAsIntSlice[tileY][tileX] = mapTileID
}
}

return maeAsIntSIice —
9

func main() { ‘
gameMap, err ;= tiled.LoadFile(mapPath)
windowWidth := gameMap.Width * gameMap.TileWidth
windowHeight := gameMap.Height * gameMap.TileHeight
ebiten.SetWindowSize(windowWidth, windowHeight)
if err I=nil {fmt.Printf("error parsing map: %s", err.Error()); os.Exit(2)}
ebitenImageMap := makeEbiteImagesFromMap(*gameMap)
playerPict, _, err := ebitenutil.NewImageFromFile("boy2.png")
if err I= nil {fmt.Printin("Error loading player image:", err)}
var mapAsIntSlice [1[]int = makeCollideMap(gameMap)
onelLevelGame := mapGame{
Level: gameMap,
tileHash: ebitenImageMap,
drawableLevel: ebiten.NewImage(windowWidth, windowHeight),
collider: tilecollider.NewCollider(mapAsIntSlice, gameMap.TileWidth, gameMap.TileHeight),
demoPlayer: player{x: 200, y: 150, pict: playerPict},
}
buildDrawableLevel(&onelLevelGame)
err = ebiten.RunGame(&oneLevelGame)
if err !=nil { fmt.Printin("Couldn't run game:", err)}

N
10

Player Input

 After building the map and

func getPlayerInput() (dX, dY float64) {

updated main in preViOUS two if ebiten.IsKeyPressed(ebiten.KeyW) | |
]] ebiten.IsKeyPressed(ebiten.KeyUp) {
- Fairly standard player input check dy =-3

} else if ebiten.IsKeyPressed(ebiten.KeyDown) | |
ebiten.IsKeyPressed(ebiten.KeyS) {
dy=3
}
if ebiten.IsKeyPressed(ebiten.KeyA) | |
ebiten.IsKeyPressed(ebiten.KeyLeft) {
dX=-3
} else if ebiten.IsKeyPressed(ebiten.KeyD) | |
ebiten.IsKeyPressed(ebiten.KeyRight) {
dX=3
}
return dX, dY

}

N
11

* Draw just add
drawing player

- highlighted

Easy update to draw

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawlmageOptions{}
screen.DrawImage(game.drawableLevel, &drawOptions)
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(float64(game.demoPlayer.x),

floaté4(game.demoPlayer.y))
screen.DrawImage(game.demoPlayer.pict, &drawOptions)

}

12

* Update used to
do nothing

- Now checks for
collisions and
possibly
removes player
movement

update

func (m *mapGame) Update() error {
Player_dx, Player_dy := getPlayerInput()
final_dx, final_dy := m.collider.Collide(m.demoPlayer.x, m.demoPlayer.y,
floateé4(m.demoPlayer.pict.Bounds().Dx()),
floateé4(m.demoPlayer.pict.Bounds().Dy()),
Player_dx, Player_dy, nil) //the final nil is a callback that we could have
called if a collision occurs
m.demoPlayer.x += final_dx
m.demoPlayer.y += final_dy
return nil

13

See the whole thing

* Let’s take a look at the whole thing
- https://github.com/jsantore/SimpleCollideDemo

- We have reached the level where the ‘simplest stripped down demao’ isn’t
guite as simple any more.

14

https://github.com/jsantore/SimpleCollideDemo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

