
Farming out Map Collisions

 2

Admin

● Quizzes
● Schedule
● Questions?

 3

Tiles and collisions

● I was asked a while ago how we could automate/outsource our
collision checks when using a tiled map

● I’ve used a library for this last fall on sabbatical for a bigger project
– So I figured – sure we can do that

● Unfortunately it went public archive in November
– But we’ll use it anyway.

● https://github.com/setanarut/tilecollider

https://github.com/setanarut/tilecollider

 4

TileCollider

● This library is intended to work with ebitengine
– But was not necessarily designed to work with the go-tiled library

● So we will have to make some adjustements

 5

TileCollider and go-tiled

● Adjustment 1:
– go-tiled unrolls the map into a 1d slice of map tiles
– TileCollider wants a slice of slices (a 2d array if you will)
– So we need to build the 2d slice from the unrolled 1d slice (reroll it)

 6

TileCollider and go-tiled

● Adjustment 2:
– go-tiled auto adjusts the map tileIDs so that the tile listed as ‘1’ in the map

file is represented as ‘0’ in the 1D slice representing the map
● And otherwise has an off by one issue 2 becomes 1 and so on

– TileCollider wants all traversable tiles to be ‘0’ while non-traversable tiles
can be any positive integer

– So we need to adjust the numbers as we parse the file and build the
TileCollider part of the map

 7

Demo Start

● To demo a tile collider, I need a tiled map to start with
– I began with the demo of a tiled map that gets painted on to a single image

● https://github.com/shinjitsu/MapDemoOneImage

– Which we have already worked through
– So I’ll start with that and only look at what is new

https://github.com/shinjitsu/MapDemoOneImage

 8

The Structs

● Game struct gets two new fields
– Highlighted

● New player struct
– Since we have to have

something to collide

type mapGame struct {
Level *tiled.Map
tileHash map[uint32]*ebiten.Image
drawableLevel *ebiten.Image
collider *tilecollider.Collider[int]
demoPlayer player

}

type player struct {
x, y float64
pict *ebiten.Image

}

 9

func makeCollideMap(gameMap *tiled.Map) [][]int {
//here my map has one layer, in a more realistic example I might have the
//0 layer be the ground and then the next layer have only the obstacles
//the tilemap is unrolled, with the 2d array unrolled into a 1d array
//we have to convert it to a 2d array for the tilecollider to work
var mapAsIntSlice [][]int = make([][]int, gameMap.Height)
for tileY := 0; tileY < gameMap.Height; tileY += 1 {

//get each row of tiles
mapAsIntSlice[tileY] = make([]int, gameMap.Width)
for tileX := 0; tileX < gameMap.Width; tileX += 1 {

mapTileID := int(gameMap.Layers[0].Tiles[tileY*gameMap.Width+tileX].ID)
//the tile collider wants 0 for all open tiles and non-zero for all obstacles
//I want the brown tiles to be the obstacles, in the map they are 1 and 4, because of the
//way the tiled library adjusts by one, they will be 0 and 3 in the array
//those will be zero, the rest will be 1
if mapTileID == 0 || mapTileID == 3 {

mapTileID = 1
} else {

mapTileID = 0
}
mapAsIntSlice[tileY][tileX] = mapTileID

}
}
return mapAsIntSlice

}

 10

func main() {
gameMap, err := tiled.LoadFile(mapPath)
windowWidth := gameMap.Width * gameMap.TileWidth
windowHeight := gameMap.Height * gameMap.TileHeight
ebiten.SetWindowSize(windowWidth, windowHeight)
if err != nil {fmt.Printf("error parsing map: %s", err.Error()); os.Exit(2)}
ebitenImageMap := makeEbiteImagesFromMap(*gameMap)
playerPict, _, err := ebitenutil.NewImageFromFile("boy2.png")
if err != nil {fmt.Println("Error loading player image:", err)}
var mapAsIntSlice [][]int = makeCollideMap(gameMap)
oneLevelGame := mapGame{

Level: gameMap,
tileHash: ebitenImageMap,
drawableLevel: ebiten.NewImage(windowWidth, windowHeight),
collider: tilecollider.NewCollider(mapAsIntSlice, gameMap.TileWidth, gameMap.TileHeight),
demoPlayer: player{x: 200, y: 150, pict: playerPict},

}
buildDrawableLevel(&oneLevelGame)
err = ebiten.RunGame(&oneLevelGame)
if err != nil { fmt.Println("Couldn't run game:", err)}

}

 11

Player Input

● After building the map and
updated main in previous two
– Fairly standard player input check

func getPlayerInput() (dX, dY float64) {
if ebiten.IsKeyPressed(ebiten.KeyW) ||

ebiten.IsKeyPressed(ebiten.KeyUp) {
dY = -3

} else if ebiten.IsKeyPressed(ebiten.KeyDown) ||
ebiten.IsKeyPressed(ebiten.KeyS) {

dY = 3
}
if ebiten.IsKeyPressed(ebiten.KeyA) ||

ebiten.IsKeyPressed(ebiten.KeyLeft) {
dX = -3

} else if ebiten.IsKeyPressed(ebiten.KeyD) ||
ebiten.IsKeyPressed(ebiten.KeyRight) {

dX = 3
}
return dX, dY

}

 12

Easy update to draw

● Draw just add
drawing player
– highlighted

func (game mapGame) Draw(screen *ebiten.Image) {
drawOptions := ebiten.DrawImageOptions{}
screen.DrawImage(game.drawableLevel, &drawOptions)
drawOptions.GeoM.Reset()
drawOptions.GeoM.Translate(float64(game.demoPlayer.x),

float64(game.demoPlayer.y))
screen.DrawImage(game.demoPlayer.pict, &drawOptions)

}

 13

update

● Update used to
do nothing
– Now checks for

collisions and
possibly
removes player
movement

func (m *mapGame) Update() error {
Player_dx, Player_dy := getPlayerInput()
final_dx, final_dy := m.collider.Collide(m.demoPlayer.x, m.demoPlayer.y,

float64(m.demoPlayer.pict.Bounds().Dx()),
float64(m.demoPlayer.pict.Bounds().Dy()),

Player_dx, Player_dy, nil) //the final nil is a callback that we could have
called if a collision occurs

m.demoPlayer.x += final_dx
m.demoPlayer.y += final_dy
return nil

}

 14

See the whole thing

● Let’s take a look at the whole thing
– https://github.com/jsantore/SimpleCollideDemo
– We have reached the level where the ‘simplest stripped down demo’ isn’t

quite as simple any more.

https://github.com/jsantore/SimpleCollideDemo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

