
Functions Part 1



  2

Admin

● Project questions?
● Still No quizzes in class till just before Thanksgiving but!!

– In comp143 quiz using computer next week Nov 17-21

● Other concerns?
● Read chapter 8 in the book for this set



  3

Of Code size and readability

● When we first started – just a little python
– Project1 was just 4ish lines

● Those last programs – dictionaries etc were getting longer
– Maybe harder to read
– And still small compared to professional software

● We need a way of organizing our code
– And preventing the need to copy and paste. 



  4

function

● A function in programming is a named sub-program that we can call 
from anywhere in the program (so long as we have imported it for 
python)
– Code block that we have named

● In python
– def <function name>(<optional arguments>):

● Code block

● Example
– def say_hello():

● print(“hello comp151”)
● print(“we are learning the ‘interesting’ stuff now”)



  5

The ‘main’ function

● The first function that is called 
typically called main
– Other languages require it
– Python just convention

● The def line for main is against 
the left edge of the window
– No indents

● The code block for main is 
indented one level

●  When we call the main function  
it is against the left edge again

● def main():
– print(“hello comp151”)
– print(“we are learning the 

‘interesting’ stuff now”)
–

● main()



  6

What should be a function?

● When we decide how code should be broken down into 
functions
– Each function should do one thing
– What is one thing?

● Print a menu
● Get data from a file
● Find the largest thing and report it
● etc 



  7

Functions that return a value

● Some functions just do 
something
– The main function from two 

slides ago
– Or the print function

● Other functions need to return 
a value

● Like the input function

● How did we use the input 
function?

● Lucky volunteer?



  8

Functions that return a value

● To write a function that returns 
a value
– Use the return keyword in your 

function
– Whatever is to the right of the 

return is handed back to where 
the function was called.

● def get_name():
– return “John”
–

–

● def main():
– my_name = get_name()



  9

Lets start

● Let’s rebuild our program to work 
with the game data to use 
functions

● We’ll do three to start. 

● load_data
● main
● print_menu



  10

What is going on

● Let’s work through what happens 
when a function is called
– Draw on board.
– Maybe use python tutor

● Linked on resources page

– To grab this data yourself get it 
from the resources page

● Use this list of dictionaries for python tutor
● [{'name': 'Terraria', 'release': 2011, 'price': 9.99, 

'total_sales': 180000000}, {'name': 'Stardew 
Valley', 'release': 2016, 'price': 14.99, 'total_sales': 
150000000}, {'name': 'RimWorld', 'release': 2018, 
'price': 34.99, 'total_sales': 95000000}, {'name': 
'Factorio', 'release': 2020, 'price': 35.0, 
'total_sales': 91000000}, {'name': "Don't Starve 
Together", 'release': 2016, 'price': 14.99, 
'total_sales': 82000000}, {'name': 'Hollow Knight', 
'release': 2017, 'price': 14.99, 'total_sales': 
82000000}, {'name': '鬼谷八荒 Tale of Immortal', 
'release': 2023, 'price': 19.99, 'total_sales': 
69000000}, {'name': 'Project Zomboid', 'release': 
2013, 'price': 19.99, 'total_sales': 69000000}, 
{'name': 'The Binding of Isaac:Rebirth', 'release': 
2014, 'price': 14.99, 'total_sales': 66000000}, 
{'name': 'Bloons TD 6', 'release': 2018, 'price': 
13.99, 'total_sales': 66000000}]

●



  11

Passing information to functions

● Sometimes we want a 
function to work differently 
from one use to another

● We want the say_hello 
function to greet someone by 
their name.

● So say_hello will change 
what it says every time it 
runs.

●

import sounddevice as sd
from kokoro_onnx import Kokoro

kokoro = Kokoro("kokoro-v1.0.onnx", "voices-v1.0.bin")

def say_hello(name):
    greeting, sample_rate = kokoro.create(f"Hello {name}, Nice to 
meet you",

voice="af_sarah", speed=1.0, lang="en-us")
    sd.play(greeting, sample_rate)
    sd.wait()

def main():
    your_name = input("What is your name")
    say_hello(your_name)

main()



  12

Passing information to functions

● Pass information to functions 
 using arguments (also 
known as parameters)
– What goes into the () of a 

function

● In your book’s terms
– Parameters are in the 

function definition
– Arguments are sent to the the 

function when you call it. 

import sounddevice as sd
from kokoro_onnx import Kokoro

kokoro = Kokoro("kokoro-v1.0.onnx", "voices-v1.0.bin")

def say_hello(name):
    greeting, sample_rate = kokoro.create(f"Hello {name}, Nice 
to meet you", voice="af_sarah", speed=1.0, lang="en-us)
    sd.play(greeting, sample_rate)
    sd.wait()

def main():
    your_name = input("What is your name")
    say_hello(your_name)

main()



  13

Passing information to functions

● Let’s draw out what happens 
when we run this code
– Function call diagrams on 

board
– python tutor doesn’t work 

with external libraries so we 
can’t use it here

● import sounddevice as sd
from kokoro_onnx import Kokoro

kokoro = Kokoro("kokoro-v1.0.onnx", "voices-
v1.0.bin")

def say_hello(name):
    greeting, sample_rate = kokoro.create(f"Hello 
{name}, Nice to meet you", 
voice="af_sarah", speed=1.0, lang="en-us”)
    sd.play(greeting, sample_rate)
    sd.wait()

def main():
    your_name = input("What is your name")
    say_hello(your_name)

main()



  14

Passing multiple parameters to functions

● When we have a function 
with more than one 
parameter
– Then we have to pass that 

same number of arguments
– By default uses “positional” 

arguments,
● First argument is put into first 

parameter and second 
argument into second 
parameter and so on.

import sounddevice as sd
from kokoro_onnx import Kokoro

kokoro = Kokoro("kokoro-v1.0.onnx", "voices-v1.0.bin")

def say_greeting(greeting, name):
    speech, sample_rate = kokoro.create(f" {greeting} {name} ",
voice="af_sarah", speed=1.0, lang="en-us")
    sd.play(speech, sample_rate)
    sd.wait()

def main():
    your_name = input("What is your name")
    say_greeting("How’s it going", your_name)

main()



  15

Multiple Parameters previously seen

● We have previously seen 
functions with multiple 
parameters

● For example the 
– draw_line in dearpygui
– First is the start point
– Second is the end point
– Later specified params (more in a 

moment)

gui_graphics.draw_line((20,20), (200,200), 
color=comp151Colors.SEA_GREEN, thickness=4)



  16

Default values for parameters

● When you write a function, you 
can give a parameter a default 
value
– In the function definition type 

● parameter=default value

– If you think there is a likely value
– If the user passed an argument, 

that argument will be used, 
– Otherwise the default value will be 

used
– See example

def register_class(course_number, course_prefix='Comp'):
    print(f"Let's register for {course_prefix}{course_number}")
       
def main():
    register_class(152)
    register_class(161, "Math")
    
main()

Output:

Let's register for Comp152

Let's register for Math161



  17

Default Parameters we’ve worked with

● Any time I’ve referred to an ‘optional’ argument to pass, it actually 
had a default parameter.

● Remember draw_arrow
–

– So if you don’t pass all 6 arguments, then line_width will be 1.

● draw_arrow also has default values for several parameters

– draw_arrow(p1, p2, … thickness= 1)

– So it turns out that the line thickness is actually optional because it has a default value
● There are also a few other parameters that we have never sent arguments to (left 

here as ...)



  18

Keyword arguments

● By default, how do argument values get copied into parameters in 
python
– From a few slide back



  19

Keyword arguments

● By default, how do argument values get copied into parameters in 
python
– From a few slide back
– By position. First thing you pass when you call a function becomes value of 

first parameter etc.
● Show on board or in pycharm

● But python supports another way  



  20

Keyword arguments II

● Python supports keyword 
arguments. 
– When you send an argument to a 

function,

– can use the parameter_name=value, to 
assign that value to parameter 

– regardless of order.

– This is what we’ve used for most of the 
optional params – especially in the 
dearpygui work 

def register_class(course_number, course_prefix='Comp'):
    print(f"Let's register for {course_prefix}{course_number}")

def main():
    register_class(course_prefix='MGMT', course_number=152)
    register_class(161, "Math")



  21

Argument passing

● You can technically mix positional arguments and keyword 
arguments.
– Usually don’t – till you are comfortable with all of this

● Though dearpygui requires it.

– Positional arguments have to be first – then keyword
– Except when you are dealing with oddities of default arguments
– Eg 

dpg.draw_line((20,20), (200,200), color=comp151Colors.SEA_GREEN, thickness=4)



  22

Mutable vs Immutable Arguments

● When passing an argument to a parameter the location of value of the 
argument is copied into the parameter
– Show on board

● For immutable objects this is fine – no changes that happen in the 
Function are seen when the function ends
– But see following slide 

 



  23

Mutable vs Immutable Arguments

● Let’s work through this one
● First with pythontutor then 

more if needed.

def param_mess(number, list):
    number = number+3
    list.append(number)
    return number*number

def main():
    demo1 = [2, 3, 5]
    demo2 = 3
    result = param_mess(number=demo2, list=demo1)
    print(f"demo2: {demo2}")
    print(f"result {result}")
    print(f"demo1 {demo1}")

main()



  24

Reading

● Finish reading chapter 8
– This is dense stuff, read it 

carefully
– PALs will be covering this too 

– but not during PAL quiz 
week next week.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

