
Dictionaries

 2

Admin

●

● How is the project4 going?
● Reading assignment: please

read chapter 6 with these
slides

 3

Storing data

● Review:
– How do we store data in our programs up till now?
– Several possibilities – several “lucky volunteers”

 4

Storing data

● Review:
– How do we store data in our programs up till now?
– Several possibilities – several “lucky volunteers”
– Variables
– Lists
– Tuples
– Anything else?
– What is each good for?

 5

Dictionary

● What is a dictionary in “real life”
●

 6

Dictionary

● What is a dictionary in “real life”
– Take a word (a key), use it to find a value:
– What is that value?

 7

Dictionary

● What is a dictionary in “real life”
– Take a word (a key), use it to find a value:
– What is that value:

● The definition of the word

● In python we also have a dictionary type
– Use it to associate several key=>Value pairs.
– Use the Key to look up the value

 8

Literal dictionary

● To type a dictionary into your
code directly use {}

● To including some starting
key→value pairs in the dictionary

● {<key> : <value>, ... , <keyn>:
<valuen> }
– See left of a python dictionary

containing actual English dictionary
entries.

– The keys are highlighted for easier
reading

● empty_dictionary= {}
●

#all definitions copyright by and taken from
Oxford English Dictionary
word_definitions = {"world":"the earth,
together with all of its countries, peoples, and
natural features.",
"arc": "a part of the circumference of a circle
or other curve.",
 "leg": "each of the limbs on which a person or
animal walks and stands."}

●

 9

Dictionary keys

● Two requirements for something to be a dictionary key
– A key can only appear once in the dictionary

● If you try to add it again, the value just gets changed.
– A key must be immutable (it must be of a type that can’t change)

● So what kind of thing (what types) can be a dictionary key that we have seen so far?

 10

Dictionary keys

● Two requirements for something to be a dictionary key
– A key can only appear once in the dictionary

● If you try to add it again, the value just gets changed.
– A key must be immutable (it must be of a type that can’t change)

● So what kind of thing (what types) can be a dictionary key that we have seen so far?
– Integer (4 better always be four or we will be in trouble
– Floating point numbers
– Strings
– Tuples

– Strings are by far the most common key for dictionaries.

 11

Dictionaries to represent objects

● Use dictionaries (dicts) in python
the way you use a struct in some
languages
– As a way to model a real world

object as a data object in your
program

● Two popular first data objects
– Students
– Bank accounts
– Both can be represented with

strings, floating point numbers and
integers

my_account = {'name': "John Santore",
 'account_num': 123456,
 'balance':123.45}

●

●

the_record = {'name': "Stu Dent",

 'gpa': 3.4,
 'studentID': 11112222}

Lets draw them out on the board.

 12

Changing the value in a dictionary

● Changing a value in a dictionary
looks a lot like using a list,
– Except you use the key in the []

instead of a number
– See code to the right

my_account = {'name': "John Santore",
 'account_num': 123456,
 'balance':123.45}

●

my_account['name'] = 'Imelda Santore'
●

the_record = {'name': "Stu Dent",
 'gpa': 3.4,
 'studentID': 11112222}

● #maybe Stu’s grades went up
the_record['gpa'] = 3.6

 13

Accessing/checking value of dictionary

● Getting a value from a dictionary
works the same way
– use the key inside [] to retrieve

the value

the_record = {'name': "Stu Dent",
 'gpa': 3.4,
 'studentID': 11112222}

print(f"our student is named
{the_record['name']}")

current_gpa = the_record['gpa']

 14

Adding a new key-value pair

● Often we need to add a new key
value pair
– For example you really need a

number of credits for any student
record.

– So lets add it

the_record = {'name': "Stu Dent",
 'gpa': 3.4,
 'studentID': 11112222}

 15

Adding a new key-value pair

● Often we need to add a new key
value pair
– For example you really need a

number of credits for any student
record.

– So lets add it
– Do the same as in the previous

approaches
● dictionary[<new key>] = new value

–

the_record = {'name': "Stu Dent",
 'gpa': 3.4,
 'studentID': 11112222}

the_record['credits'] = 135

 16

Dictionaries that represent a collection of values

● While we can use a single
dictionary to represent an object
– Often we want to use a dictionary

to collect a bunch of related key-
value pairs

● For example this list of games
associated with the thousands of
players in early Aug 2025

● (eg: Stardew Valley had 81,000
players.)

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

 17

Looping through the dictionary

● Sometimes we want to examine
every item in the dictionary
– Instead of using just a value here or

there
● Can loop through dictionary keys

like looping through a list
– for <new variable> in dictionary.keys()

● Let’s look at what is going on over here
● Maybe ‘hand execute’ on board for he first few

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

for game in top_games.keys():
 print(f"Game: {game} had
{top_games[game]*1000} daily players in
August")

 18

In class exercise

● Take the top_games dictionary and
loop through the keys to find the
game with the most players
– We can see because we wrote it

out, but if the dictionary gets
updated, the answer might change

– Then print out the game of the team
with the most players.

– Then lets look up the games for this
week and add in a couple more
games and run our program again

● top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

 19

Dictionary keys that don’t exist

● Suppose we try to use a key
that doesn’t exist

●

● We might try the code to the right
if let the AI do too much
suggesting
– And the highlighted code will

cause trouble
–

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

counter_strike2_players = top_games["counter
strike2"]
next_players = top_games["counter strike3"]
if counter_strike2_players < next_players:
 print("We've moved on")

 20

Key Error

● When you try to directly access a key that doesn’t exist in the
dictionary, you get an error like this

● Traceback (most recent call last):
● File

"/workspace/Fall2025/CS1/dearPyGuiTesting/dictionaryDemo.py"
, line 13, in <module>

● next_players = top_games["counter strike3"]
● ~~~~~~~~~^^^^^^^^^^^^^^^^^^^
● KeyError: 'counter strike3'
●

 21

Using get() to avoid the error

● Like lists, dictionaries are also
objects, so there are functions
we can use to ask the dictionary
to do something for us.
– Like the keys function from a

couple of slides ago.
– So what is the value of

counter_strike2_players?

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

counter_strike2_players =
top_games.get("counter strike2")
next_players = top_games.get("counter strike3")

 22

Using get() to avoid the error

● Like lists, dictionaries are also
objects, so there are functions we
can use to ask the dictionary to do
something for us.
– Like the keys function from a couple

of slides ago.
– So what is the value of

counter_strike2_players?
● 1100 right?

– So what about next_players?
● We haven’t talked about it, but any

guesses?

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

counter_strike2_players =
top_games.get("counter strike2")
next_players = top_games.get("counter strike3")

 23

Using get() to avoid the error
● Like lists, dictionaries are also

objects, so there are functions
we can use to ask the dictionary
to do something for us.
– Like the keys function from a

couple of slides ago.
– So what is the value of

counter_strike2_players?
● 1100 right?

– So what about next_players?
● None
● Which is python speak for no object

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

counter_strike2_players =
top_games.get("counter strike2")
next_players = top_games.get("counter
strike3")

 24

None

● None is python’s way of saying
no object here

● By default python returns None
from functions that return an
object when there is no object to
return.

● None will evaluate to False in an
if statement
– See code

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

for game in top_games.keys():
 print(f"Game: {game} had
{top_games[game]*1000} daily players in
August")

if top_games.get("counter strike3"):
 print(f"counter strike3 has
{top_games.get("counter strike3")} players")
else:
 print(f"no such game")

 25

Get with a default value

● If you don’t want None when an
item doesn’t exist in the
dictionary, then get can take a
default value
– What would be a good default

value for players in our
games/players dictionary?

 26

Get with a default value

● If you don’t want None when an
item doesn’t exist in the dictionary,
then get can take a default value
– What would be a good default

value for players in our
games/players dictionary?

– I think 0 makes the most sense,
since if the game isn’t there, they
likely have no players.

– Put the default value as the second
thing in the parentheses

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

for game in top_games.keys():
 print(f"Game: {game} had
{top_games[game]*1000} daily players in
August")

cs3_players = top_games.get("counter
strike3",0)
#now cs3_players is 0 instead of None

 27

Looping through dictionary to print

● If you want to loop through and
print the dictionary
– Then you need both keys and

values
– Use the items function in the

dictionary
● With a for loop

– This will create two variables
● First for key, then for matching

value
● See example

top_games={"counter strike2": 1100,
 "DOTA2": 571,
 "PUBG:Battlegrounds":334,
 "Rust": 123,
 "Delta Force": 106,
 "Banana": 104,
 "Stardew Valley": 81}

for game, players in top_games.items():
 print(f"{game} had {players} in August")

 28

Lets put it all together
● Lets build a small program together that puts all the dictionary work

together with our loops, if statements, files and more.
● Grab two files

– WordFile.txt from the resources page
– https://www.gutenberg.org/cache/epub/2600/pg2600.txt
– Save them both to your current pycharm project
– Then create a new python file

● Project description on next line once everyone has these two files
downloaded.
– Let me and/or the PALs know if there is trouble

https://www.gutenberg.org/cache/epub/2600/pg2600.txt

 29

Word count exercise

● Next we will open a file (lets start with WordFile.txt)
– And read in all of the lines
– Break each line up into words
– Strip the newlines off any words that have them
– Remove punctuation from the words

import string
translator = str.maketrans('', '', string.punctuation)
Remove punctuation
clean_text = s.translate(translator)

– If the word is in the word_count dictionary, then update the count
– Otherwise add it to the word_count
– Finally when everything is done, report the word counts to the user by printing them all out.

 30

Dictionaries in a list

● Dictionaries are just more data
● So if we had a bunch of

dictionaries each representing a
student, we could build a list
which represented all the
students in a class

● Show results on board

the_record = {'name': "Stu Dent",
 'gpa': 3.4,
 'studentID': 11112222}
student1 = {'name' : "Hard Worker",
 'gpa': 3.8,
 'studentID': 12121212}

student2 = {'name' : "Playstoo Muchgames",
 'gpa': 2.01,
 'studentID': 121123123}

all_students = []
all_students.append(student1)
all_students.append(student2)
all_students.append(the_record)

 32

Reminder:Reading

● Read chapter 6
● We covered most of it here

– But there are a couple of
things in chapter 6 in your
book

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32

