
Dictionaries



  2

Admin

●

● How is the project4 going?
● Reading assignment: please 

read chapter 6 with these 
slides
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Storing data

● Review:
– How do we store data in our programs up till now?
– Several possibilities – several “lucky volunteers”
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Storing data

● Review:
– How do we store data in our programs up till now?
– Several possibilities – several “lucky volunteers”
– Variables
– Lists
– Tuples
– Anything else?
– What is each good for?
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Dictionary

● What is a dictionary in “real life”
●
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Dictionary

● What is a dictionary in “real life”
– Take a word (a key), use it to find a value: 
– What is that value?



  7

Dictionary

● What is a dictionary in “real life”
– Take a word (a key), use it to find a value: 
– What is that value:

● The definition of the word

● In python we also have a dictionary type
– Use it to associate several key=>Value pairs.
– Use the Key to look up the value 
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Literal dictionary

● To type a dictionary into your 
code directly use {}

● To including some starting 
key→value pairs in the dictionary

● {<key> : <value>, ... , <keyn>: 
<valuen> }
– See left of a python dictionary 

containing actual English dictionary 
entries.

– The keys are highlighted for easier 
reading

● empty_dictionary= {}
●

#all definitions copyright by and taken from 
Oxford English Dictionary
word_definitions = {"world":"the earth, 
together with all of its countries, peoples, and 
natural features.",
"arc": "a part of the circumference of a circle 
or other curve.",
 "leg": "each of the limbs on which a person or 
animal walks and stands."}

●
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Dictionary keys

● Two requirements for something to be a dictionary key
– A key can only appear once in the dictionary

● If you try to add it again, the value just gets changed.
– A key must be immutable (it must be of a type that can’t change)

● So what kind of thing (what types) can be a dictionary key that we have seen so far? 
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Dictionary keys

● Two requirements for something to be a dictionary key
– A key can only appear once in the dictionary

● If you try to add it again, the value just gets changed.
– A key must be immutable (it must be of a type that can’t change)

● So what kind of thing (what types) can be a dictionary key that we have seen so far?
– Integer (4 better always be four or we will be in trouble
– Floating point numbers
– Strings
– Tuples

– Strings are by far the most common key for dictionaries.
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Dictionaries to represent objects

● Use dictionaries (dicts) in python 
the way you use a struct in some 
languages
– As a way to model a real world 

object as a data object in your 
program

● Two popular first data objects
– Students 
– Bank accounts
– Both can be represented with 

strings, floating point numbers and 
integers 

my_account = {'name': "John Santore",
              'account_num': 123456,
              'balance':123.45}

●

●

the_record = {'name': "Stu Dent",
              
              'gpa': 3.4,
              'studentID': 11112222}

Lets draw them out on the board.
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Changing the value in a dictionary

● Changing a value in a dictionary 
looks a lot like using a list, 
– Except you use the key in the [ ] 

instead of a number
– See code to the right

my_account = {'name': "John Santore",
              'account_num': 123456,
              'balance':123.45}

●

my_account['name'] = 'Imelda Santore'
●

the_record = {'name': "Stu Dent",
              'gpa': 3.4,
              'studentID': 11112222}

● #maybe Stu’s grades went up
the_record['gpa'] = 3.6
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Accessing/checking value of dictionary

● Getting a value from a dictionary 
works the same way 
– use the key inside [ ] to retrieve 

the value

the_record = {'name': "Stu Dent",
              'gpa': 3.4,
              'studentID': 11112222}

print(f"our student is named 
{the_record['name']}")

current_gpa = the_record['gpa']
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Adding a new key-value pair

● Often we need to add a new key 
value pair
– For example you really need a 

number of credits for any student 
record.

– So lets add it

the_record = {'name': "Stu Dent",
              'gpa': 3.4,
              'studentID': 11112222}
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Adding a new key-value pair

● Often we need to add a new key 
value pair
– For example you really need a 

number of credits for any student 
record.

– So lets add it
– Do the same as in the previous 

approaches
● dictionary[<new key>] = new value

–

the_record = {'name': "Stu Dent",
              'gpa': 3.4,
              'studentID': 11112222}

the_record['credits'] = 135
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Dictionaries that represent a collection of values

● While we can use a single 
dictionary to represent an object
– Often we want to use a dictionary 

to collect a bunch of related key-
value pairs

● For example this list of games 
associated with the thousands of 
players in early Aug 2025

● (eg: Stardew Valley had 81,000 
players.)

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}
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Looping through the dictionary

● Sometimes we want to examine 
every item in the dictionary
– Instead of using just a value here or 

there
● Can loop through dictionary keys 

like looping through a list
– for <new variable> in dictionary.keys()

● Let’s look at what is going on over here
● Maybe ‘hand execute’ on board for he first few 

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

for game in top_games.keys():
    print(f"Game: {game} had 
{top_games[game]*1000} daily players in 
August")
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In class exercise

● Take the top_games dictionary and 
loop through the keys to find the 
game with the most players
– We can see because we wrote it 

out, but if the dictionary gets 
updated, the answer might change

– Then print out the game of the team 
with the most players.

– Then lets look up the games for this 
week and add in a couple more 
games and run our program again 

● top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}
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Dictionary keys that don’t exist

● Suppose we try to use a key  
that doesn’t exist

●

● We might try the code to the right 
if let the AI do too much 
suggesting
– And the highlighted code will 

cause trouble
–

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

counter_strike2_players = top_games["counter 
strike2"]
next_players = top_games["counter strike3"]
if counter_strike2_players < next_players:
    print("We've moved on")
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Key Error

● When you try to directly access a key that doesn’t exist in the 
dictionary, you get an error like this

●   Traceback (most recent call last):
●   File 

"/workspace/Fall2025/CS1/dearPyGuiTesting/dictionaryDemo.py"
, line 13, in <module>

●     next_players = top_games["counter strike3"]
●                    ~~~~~~~~~^^^^^^^^^^^^^^^^^^^
● KeyError: 'counter strike3'
●
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Using get() to avoid the error

● Like lists, dictionaries are also 
objects, so there are functions 
we can use to ask the dictionary 
to do something for us. 
– Like the keys function from a 

couple of slides ago.
– So what is the value of 

counter_strike2_players?

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

counter_strike2_players = 
top_games.get("counter strike2")
next_players = top_games.get("counter strike3")
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Using get() to avoid the error

● Like lists, dictionaries are also 
objects, so there are functions we 
can use to ask the dictionary to do 
something for us. 
– Like the keys function from a couple 

of slides ago.
– So what is the value of 

counter_strike2_players?
● 1100 right?

– So what about next_players?
● We haven’t talked about it, but any 

guesses?

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

counter_strike2_players = 
top_games.get("counter strike2")
next_players = top_games.get("counter strike3")
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Using get() to avoid the error
● Like lists, dictionaries are also 

objects, so there are functions 
we can use to ask the dictionary 
to do something for us. 
– Like the keys function from a 

couple of slides ago.
– So what is the value of 

counter_strike2_players?
● 1100 right?

– So what about next_players?
● None
● Which is python speak for no object

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

counter_strike2_players = 
top_games.get("counter strike2")
next_players = top_games.get("counter 
strike3")
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None

● None is python’s way of saying 
no object here

● By default python returns None 
from functions that return an 
object when there is no object to 
return.

● None will evaluate to False in an 
if statement
– See code 

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

for game in top_games.keys():
    print(f"Game: {game} had 
{top_games[game]*1000} daily players in 
August")

if top_games.get("counter strike3"):
    print(f"counter strike3 has 
{top_games.get("counter strike3")} players")
else:
    print(f"no such game")
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Get with a default value

● If you don’t want None when an 
item doesn’t exist in the 
dictionary, then get can take a 
default value
– What would be a good default 

value for players in our 
games/players dictionary?
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Get with a default value

● If you don’t want None when an 
item doesn’t exist in the dictionary, 
then get can take a default value
– What would be a good default 

value for players in our 
games/players dictionary?

– I think 0 makes the most sense, 
since if the game isn’t there, they 
likely have no players.

– Put the default value as the second 
thing in the parentheses 

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

for game in top_games.keys():
    print(f"Game: {game} had 
{top_games[game]*1000} daily players in 
August")

cs3_players = top_games.get("counter 
strike3",0)
#now cs3_players is 0 instead of None
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Looping through dictionary to print

● If you want to loop through and 
print the dictionary 
– Then you need both keys and 

values
– Use the items function in the 

dictionary
● With a for loop

– This will create two variables
● First for key, then for matching 

value
● See example 

top_games={"counter strike2": 1100,
           "DOTA2": 571,
           "PUBG:Battlegrounds":334,
           "Rust": 123,
           "Delta Force": 106,
           "Banana": 104,
           "Stardew Valley": 81}

for game, players in top_games.items():
    print(f"{game} had  {players} in August")
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Lets put it all together
● Lets build a small program together that puts all the dictionary work 

together with our loops, if statements, files and more.
● Grab two files

– WordFile.txt from the resources page
– https://www.gutenberg.org/cache/epub/2600/pg2600.txt
– Save them both to your current pycharm project
– Then create a new python file

● Project description on next line once everyone has these two files 
downloaded.
– Let me and/or the PALs know if there is trouble

https://www.gutenberg.org/cache/epub/2600/pg2600.txt
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Word count exercise

● Next we will open a file (lets start with WordFile.txt) 
– And read in all of the lines
– Break each line up into words
– Strip the newlines off any words that have them
– Remove punctuation from the words

import string
translator = str.maketrans('', '', string.punctuation)
# Remove punctuation
clean_text = s.translate(translator)

– If the word is in the word_count dictionary, then update the count
– Otherwise add it to the word_count
– Finally when everything is done, report the word counts to the user by printing them all out. 
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Dictionaries in a list

● Dictionaries are just more data
● So if we had a bunch of 

dictionaries each representing a 
student, we could build a list 
which represented all the 
students in a class

● Show results on board

the_record = {'name': "Stu Dent",
              'gpa': 3.4,
              'studentID': 11112222}
student1 = {'name' : "Hard Worker",
            'gpa': 3.8,
            'studentID': 12121212}

student2 = {'name' : "Playstoo Muchgames",
            'gpa': 2.01,
            'studentID': 121123123}

all_students = []
all_students.append(student1)
all_students.append(student2)
all_students.append(the_record)
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Reminder:Reading

● Read chapter 6 
● We covered most of it here

– But there are a couple of 
things in chapter 6 in your 
book
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