
Comp151: lists and files

 2

Reading Assignment

● Read chapter 4 in the book after these slides
● Also please listen to the Aug 21st (2025) episode of “the

programming podcast”
– https://www.programmingpodcast.com/
– Direct links to some options below
– https://www.youtube.com/watch?v=I3hXjy9v4R0
– https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-wha

t-went-wrong/id1778885184?i=1000722914089
– https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH

● We will discuss in class in one week.

https://www.programmingpodcast.com/
https://www.youtube.com/watch?v=I3hXjy9v4R0
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH

 3

Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data with what we know so far?

 4

Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data?

– Well we could ask the user for it.

● But usually we want to just get the data for the user how might
we do that (even if we don’t know so far?)

 5

Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data?

– Well we could ask the user for it.

● But usually we want to just get the data for the user how might we do
that (even if we don’t know so far?)
– The two I usually here are

● Get it from a file
● Get it from the internet

– The file part is really easy with a text file
– The internet part is harder (if only because so many sites are trying to

charge for it) and we will put it off for now.

 6

Files

● We can split files into two types for our purposes
– Text files, which contain just printable characters in the zeros and ones

● (even if some of those are used for formatting like in html)

– Binary file which contain any arbitrary data,
● Often the zeros and ones cannot be converted to text in strings

● Now let me have a lucky volunteer or few give me some
examples of each type of file

 7

Opening a text file

● To open a file easily in python use
built in function open
– Inside of open

● First put the file name as a string
● Then put either

– ‘r’ (open for reading)
– ‘w’ (open for writing – will overwrite the

whole file)
– ‘a’ (open for appending – will write new

stuff to the end of the file)

● Here give standard warning:
– Never open a .py file, for your own

sanity

● my_file = open(“fun.txt”, “r”)

 8

Reading in a text file

● To read all the lines of a file into
a list of strings use the
readlines() function
– Use the file.readlines() function
– Now all_lines is a list of strings
– Each line is one string in the list.
– Draw it on the board if needed

● Lets try it
– Grab the requiredCS.txt file from

the class website

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()

 9

Looping through a list

● If we want to do something for every item (element) in a list
– We call it “looping through the list” or iterating over a list
– This is a very common thing in programming and python has a couple

of easy constructs to do this.

● Basic looping through the list
– for <new variable> in <list variable>:

● do something to each item in the list here

● Notice that the part where we do something is indented

 10

Example

● Let’s continue the example from
earlier to do something for each
line in the file

● For this first pass, lets just print
each line

● Lets be sure to git commit after
this

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()
● for line in all_lines:

– print(line)

 11

Code Blocks

● A code block, is used to
determine which code belongs
together as a “chunk”
– Determines what code is part of a

for loop and what code is after the
loop

– Code blocks in python are
determined by indentation

– All code indented to the same
level is part of the same code
block

● Till we reach another indent level

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()
● for line in all_lines:

– print(line)
– print(“will show after each line”)

● print(“this will print once after”)
● #yellow highlighted is part of the

#code block in scope of the for
#will be run for every item in list

 12

with as

● Alternative way to get files
– Keywords with and as
– Creates a codeblock based around

a new variable
– When the code block for with ends

● Resources released
● Here File will be closed

● Especially useful for
reading/writing files and using lots
of files.

with open("fun.txt", "r") as my_file:
 all_lines = my_file.readlines()
 for line in all_lines:
 print(line)
 print("will show after each line")
 print("this will print once after")

 13

Splitting a string

● Recall string objects can do work
for us

● One of the things strings can do
for us is to split itself into a list of
smaller strings
– Splitting at a particular character
– Eg:
– <string>.split(<char to split>)

● demo = “this that these those”
● #lets split on the space char
● words = demo.split(“ “)
● #words is

[“this”, “that”, “these”, “those”]
● print(words[1])
● #which word gets printed here?

 14

Now let’s extend our example

● As an exercise for the students
● Lets extend our earlier example
● After reading in the file as a list

of strings, one for each line and
looping through each line, lets
split the lines in two and print the
course number first and then the
course credits using f-string on
the next line

● So the output would look
like:

● comp151
● 3 credits

 15

Scope and Indenting

● Indenting to create a code block
– Helps determine scope of

variables
– Scope: where a variable is usable

and visible.
– If you create a variable in a block,

it is available till the end of the
block

– Variables created at the leftmost
indent level are available till the
end of the file

● file_handle = open(‘silly.txt’, ‘r’)
● all_lines = file_handle.readlines()
● for line in all_lines:

– course_and_name = line.split(‘:’)
– course = course_and_name[0]
– name = course_and_name[1]
– print(course)
– print(name)

● print(“those are your CS required”)

 16

Indenting and your book

● Your book has a slightly different approach to the same
material on indenting and code blocks, be sure to read it as
well (chapter 4) so that you get both perspectives.

 17

Lists of numbers

● Sometimes we just want to do
something multiple times
– For that we can use a list of

numbers.
– The range function will produce a

list of numbers*
– By default list from zero up to but

not including the cutoff

● numbers = range(10)
● # numbers is

[0,1,2,3,4,5,6,7,8,9]

* it used to be an actual list – now almost a list

 18

Using number lists

● Number lists created using range
usually used to run loops a fixed
number of times (one for each
number in the list)

● Can start from any number

● for number in range(10):
– print(“gets printed 10 times”)

●

●

for num in range(10, 20):
 print(f"counting from 10-19 currently at {num}")

 19

Counting by other than 1

● Can ‘skip count’
●

●

●

● Or even count backwards

for num in range(10, 100, 10):
 print(f"skip counting currently at {num}")

●

●

●

for num in range(10, 1, -1):
 print(num)
print("blastoff")

 20

tuples

● Tuples are sort of like
immutable/read-only lists.
– Like strings, once you create a

tuple you can’t change it.
– But otherwise, for not mutating

operations, can do the same
things on tuples and lists

– Because tuples are read-only,
often do have different types in a
tuple

– Create literal tuple with ()

● student = (“john”, 3.2, 92)
● student[1] #will be 3.2

 21

slices

● If you want a sub-sequence of
any python sequence type use a
slice
– Use board to discuss slicing

indexes vs locations
– The slice copies part of the

sequence (string/list/tuple) into a
new one.

– Use sequence[X:Y] to make a
copy of the subsequence from X
to Y

● courses = [“comp151”, “comp152”,
“comp199”, “comp206”, “comp250”]

● first_year_courses = courses[0:3]

● # first_year_courses has contents
[“comp151”, “comp152”, “comp199”]

 22

Slices II

● But programmers are ‘lazy’
– So a shortcut available if you want

to go all the way to one end of the
original with a slice

– Omit the first slice index will start
from the beginning

– Omit the second slice index will go
to the end

– So what do we have here:
– Also lets try with strings

● courses = [“comp151”, “comp152”,
“comp199”, “comp206”,
“comp250”]

● Question1 = courses[:3]

● Question2 = courses[2:]

● Question3 = courses[:]

 23

len

● Sometimes we need to know
how many things are in a
sequence(string/tuple/list)
– Python has one function to do all

that
– len(sequence) will tell use how

many ‘things’ are in the
sequence/linear collection

● courses = [“comp151”, “comp152”,
“comp199”, “comp206”, “comp250”]

● how_many = len(courses)
● #how_many has value 5
● desc = “A first year seminar”
● num_chars = len(desc)
● #num_chars has value 20

(spaces count as characters)

 24

Reading Assignment

● At this point read chapter 4 to page 64 in your book,
● Now lets add the podcast to the assignment

– Also please listen to the Aug 21st (2025) episode of “the programming
podcast”

– https://www.programmingpodcast.com/
– Direct links to some options below
– https://www.youtube.com/watch?v=I3hXjy9v4R0
– https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-w

rong/id1778885184?i=1000722914089
– https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH
– We will discuss in class in one week. (Mon sept 29 or Tues Sept 30)

● Questions about Project2?

https://www.programmingpodcast.com/
https://www.youtube.com/watch?v=I3hXjy9v4R0
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

