
Comp151: lists and files
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Reading Assignment

● Read chapter 4 in the book after these slides
● Also please listen to the Aug 21st (2025) episode of “the 

programming podcast” 
– https://www.programmingpodcast.com/ 
– Direct links to some options below
– https://www.youtube.com/watch?v=I3hXjy9v4R0 
– https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-wha

t-went-wrong/id1778885184?i=1000722914089
– https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH 

● We will discuss in class in one week.

https://www.programmingpodcast.com/
https://www.youtube.com/watch?v=I3hXjy9v4R0
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH
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Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data with what we know so far?
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Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data?

– Well we could ask the user for it.

● But usually we want to just get the data for the user how might 
we do that (even if we don’t know so far?)
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Getting some data into lists

● So far we have written the data for lists into the program
● How else could we get that data?

– Well we could ask the user for it.

● But usually we want to just get the data for the user how might we do 
that (even if we don’t know so far?)
– The two I usually here are

● Get it from a file
● Get it from the internet

– The file part is really easy with a text file
– The internet part is harder (if only because so many sites are trying to 

charge for it) and we will put it off for now.
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Files

● We can split files into two types for our purposes
– Text files, which contain just printable characters in the zeros and ones  

● (even if some of those are used for formatting like in html)

– Binary file which contain any arbitrary data,
● Often the zeros and ones cannot be converted to text in strings

● Now let me have a lucky volunteer or few give me some 
examples of each type of file
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Opening a text file

● To open a file easily in python use 
built in function open
– Inside of open

● First put the file name as a string
● Then put either 

– ‘r’ (open for reading)
– ‘w’ (open for writing – will overwrite the 

whole file)
– ‘a’ (open for appending – will write new 

stuff to the end of the file)

● Here give standard warning:
– Never open a .py file, for your own 

sanity

● my_file = open(“fun.txt”, “r”)
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Reading in a text file

● To read all the lines of a file into 
a list of strings use the 
readlines() function
– Use the file.readlines() function
– Now all_lines is a list of strings
– Each line is one string in the list.
– Draw it on the board if needed

● Lets try it
– Grab the requiredCS.txt file from 

the class website 

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()
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Looping through a list

● If we want to do something for every item (element) in a list
– We call it “looping through the list” or iterating over a list
– This is a very common thing in programming and python has a couple 

of easy constructs to do this.

● Basic looping through the list
–  for <new variable> in <list variable>:

● do something  to each item in the list here

● Notice that the part where we do something is indented
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Example

● Let’s continue the example from 
earlier to do something for each 
line in the file

● For this first pass, lets just print 
each line

● Lets be sure to git commit after 
this 

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()
● for line in all_lines:

– print(line)
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Code Blocks

● A code block, is used to 
determine which code belongs 
together as a “chunk”
– Determines what code is part of a 

for loop and what code is after the 
loop

– Code blocks in python are 
determined by indentation

– All code indented to the same 
level is part of the same code 
block

● Till we reach another indent level

● my_file = open(“fun.txt”, “r”)
● all_lines = my_file.readlines()
● for line in all_lines:

– print(line)
– print(“will show after each line”)

● print(“this will print once after”)
● #yellow highlighted is part of the

#code block in scope of the for
#will be run for every item in list
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with as 

● Alternative way to get files
– Keywords with and as
– Creates a codeblock based around 

a new variable
– When the code block for with ends

● Resources released
● Here File will be closed

● Especially useful for 
reading/writing files and using lots 
of files.

with open("fun.txt", "r") as my_file:
    all_lines = my_file.readlines()
    for line in all_lines:
        print(line)
        print("will show after each line")
    print("this will print once after")
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Splitting a string

● Recall string objects can do work 
for us

● One of the things strings can do 
for us is to split itself into a list of 
smaller strings
– Splitting at a particular character
– Eg:
– <string>.split(<char to split>)

● demo = “this that these those”
● #lets split on the space char
● words = demo.split(“ “)
● #words is

[“this”, “that”, “these”, “those”]
● print(words[1])
● #which word gets printed here?
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Now let’s extend our example

● As an exercise for the students
● Lets extend our earlier example
● After reading in the file as a list 

of strings, one for each line and 
looping through each line, lets 
split the lines in two and print the 
course number first and then the 
course credits using f-string on 
the next line 

● So the output would look 
like:

● comp151
● 3 credits
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Scope and Indenting

● Indenting to create a code block
– Helps determine scope of 

variables
– Scope: where a variable is usable 

and visible. 
– If you create a variable in a block, 

it is available till the end of the 
block

– Variables created at the leftmost 
indent level are available till the 
end of the file

● file_handle = open(‘silly.txt’, ‘r’)
● all_lines = file_handle.readlines()
● for line in all_lines:

– course_and_name = line.split(‘:’)
– course = course_and_name[0]
– name = course_and_name[1]
– print(course)
– print(name)

● print(“those are your CS required”)
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Indenting and your book

● Your book has a slightly different approach to the same 
material on indenting and code blocks, be sure to read it as 
well (chapter 4) so that you get both perspectives. 
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Lists of numbers

● Sometimes we just want to do 
something multiple times
– For that we can use a list of 

numbers.
– The range function will produce a 

list of numbers*
– By default list from zero up to but 

not including the cutoff 

● numbers = range(10)
● # numbers is

[0,1,2,3,4,5,6,7,8,9] 

* it used to be an actual list – now almost a list
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Using number lists

● Number lists created using range 
usually used to run loops a fixed 
number of times (one for each 
number in the list)

● Can start from any number

● for number in range(10):
– print(“gets printed 10 times”)

●

●

for num in range(10, 20):
    print(f"counting from 10-19 currently at {num}")
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Counting by other than 1

● Can ‘skip count’
●

●

●

● Or even count backwards 

for num in range(10, 100, 10):
    print(f"skip counting currently at {num}")

●

●

●

for num in range(10, 1, -1):
    print(num)
print("blastoff")
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tuples

● Tuples are sort of like 
immutable/read-only lists.
– Like strings, once you create a 

tuple you can’t change it.
– But otherwise, for not mutating 

operations,  can do the same 
things on tuples and lists

– Because tuples are read-only, 
often do have different types in a 
tuple

– Create literal tuple with ( ) 

● student = (“john”, 3.2, 92)
● student[1] #will be 3.2
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slices

● If you want a sub-sequence of 
any python sequence type use a 
slice
– Use board to discuss slicing 

indexes vs locations
– The slice copies part of the 

sequence (string/list/tuple) into a 
new one.

– Use sequence[X:Y] to make a 
copy of the subsequence from X 
to Y  

● courses = [“comp151”, “comp152”, 
“comp199”, “comp206”, “comp250”]

● first_year_courses = courses[0:3]

● # first_year_courses has contents 
[“comp151”, “comp152”, “comp199”]
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Slices II

● But programmers are ‘lazy’
– So a shortcut available if you want 

to go all the way to one end of the 
original with a slice

– Omit the first slice index will start 
from the beginning

– Omit the second slice index will go 
to the end

– So what do we have here:
– Also lets try with strings

● courses = [“comp151”, “comp152”, 
“comp199”, “comp206”, 
“comp250”]

● Question1 = courses[ :3]

● Question2 = courses[2:]

● Question3 = courses[ : ]
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len

● Sometimes we need to know 
how many things are in a 
sequence(string/tuple/list)
– Python has one function to do all 

that
– len(sequence) will tell use how 

many ‘things’ are in the 
sequence/linear collection

● courses = [“comp151”, “comp152”, 
“comp199”, “comp206”, “comp250”]

● how_many = len(courses)
● #how_many has value 5
● desc = “A first year seminar”
● num_chars = len(desc)
● #num_chars has value 20 

(spaces count as characters)
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Reading Assignment

● At this point read chapter 4 to page 64 in your book,
● Now lets add the podcast to the assignment

– Also please listen to the Aug 21st (2025) episode of “the programming 
podcast” 

– https://www.programmingpodcast.com/ 
– Direct links to some options below
– https://www.youtube.com/watch?v=I3hXjy9v4R0 
– https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-w

rong/id1778885184?i=1000722914089
– https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH 
– We will discuss in class in one week. (Mon sept 29 or Tues Sept 30)

● Questions about Project2?

https://www.programmingpodcast.com/
https://www.youtube.com/watch?v=I3hXjy9v4R0
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://podcasts.apple.com/us/podcast/6-000-applications-0-jobs-what-went-wrong/id1778885184?i=1000722914089
https://open.spotify.com/episode/33IxkLLvzHQHFMA9C2EBmH
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