
Python and Lists

 2

Admin

● Anyone with questions from last time?
● Calendar:

– Reminder the dates for the midterm
● Day Sections: Oct 22 or 23rd depending on section

– No classes on Mon Oct 13 or Tues Nov 11 (State Holidays)
– Tuesday schedule on Wed Nov 12th

● Project?
● Reading Assignment: Read chapter 3 in the Python Crash Course

Book for this set.

 3

Storing information for later use

● So far how do we store information for later use so far?

 4

Storing information for later use

● So far how do we store information for later use so far?
– Store the information in variables right?

● What kind of information can we store in variables so far?

 5

Storing information for later use

● So far how do we store information for later use so far?
– Store the information in variables right?

● What kind of information can we store in variables so far?
– Strings

● name = ‘Comp151’
– Integers

● age = 167
– Floating point numbers

● gpa = 3.5

 6

Sometimes we want lots of data

● Sometimes we want to work with lots of data that is related
– We could just have lots of variables

● student1 = ‘Linus’
● student2 = ‘Cletus’
● student3 = ‘Clement’
● student4 = ‘Sixtus’
● student5 = ‘Cornelius’
● student6 = ‘Cyprian’
● student7 = ‘Lawrence’

– But that would get tedious really quick
● And “programmers are lazy”

– Also, we would like those students to be all linked together somehow

 7

Lists: a simple collection

● In python, the simplest Linear collection is a List
– Linear collection: A data storage mechanism where an arbitrary

number of data items are stored with a one by one order
● There is exactly one first item, exactly one second and so on

● Lists in python can contain any type of data in any position
– Unlike many languages which must have the same type in all positions

● BUT!!! it is almost always best to keep the same type in all
positions in a list
– So (nearly) all of my examples will be like that.

 8

Creating lists

● Creating an empty list
– With a literal empty list use square brackets

● student_list = []
– Using the ‘factory function’

● student_list2 = list()

● Creating a list with something in it from the start (must be literal)
– student_list3 = [“Chrysogonus”, “John”, “Paul”, “Cosmas”, “Damion”]
– Student list 3 has 5 strings in it

 9

List Items
● Lists start counting from 0

– Show on board with item numbers

● Use the [] operator with the list variable to access a single item in a list

students = ["Chrysogonus", "John", "Paul", "Cosmas", "Damion"]

student_name = students[2]
● This will put “Paul” into the student_name variable
● You can change a list item the same way
● students = ["Chrysogonus", "John", "Paul", "Cosmas", "Damion"]
● students[1] = "Enping"

● Now students has contents:
– [“Chrysogonus”, “Enping”, “Paul”, “Cosmas”, “Damion”]

 10

List items starting from the last item
● If you want to access a list item starting from the end use negative

numbers
– (lists start from zero when ascending, but -1 when descending)

weekdays = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thurbsday", "Friday", "Saturday"]

● Let’s get that last day
last_day = weekdays[-1]

● last_day now contains “Saturday”
● Changing that mistake starting from the end

weekdays[-3] = "Thursday"

● So now weekdays has the value
– ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday']

 11

Notes on Variable names

● Lists hold lots of things
– So convention says make the name plural

● Where other variables should generally be singular.

 12

Adding to a list
● If we want to add new items to the list

courses = ["comp151", "comp152", "math130", "math120"]
– Add at the end of the list

courses.append("comp250")
– List contents are now

● ['comp151', 'comp152', 'math130', 'math120', 'comp250']

– Add to a spot in the list
● If I found that I forgot comp143 and it should be right after comp151

courses.insert(1, "Comp143")
– The first number is what spot to insert at, the second the thing to insert
– List contents now:

● ['comp151', 'Comp143', 'comp152', 'math130', 'math120', 'comp250']

 13

Make sure we do it in code

● If we haven’t already, let’s make sure to do some of this in code in
pycharm

● Also many questions – some of you have them, if we haven’t asked
yet, please do so now.
– Computer Code is a different way of thinking, ask now while they are

“doubts” rather than letting it snowball to “I have no idea what is going on”
in a few weeks.

● Once we do all that – what is the next obvious step in learning lists?

 14

Removing items from lists
● Removing an item from a list

books = ["Python Crash Course", "Game Programming", "Code Complete", "Clean Code", "The Pragmatic Programmer", "Python Crash Course"]
– Removing when you know the item to remove (use remove function)

books.remove("Python Crash Course")

– Remove only removes the first occurrence in the list – so books becomes
● ['Game Programming', 'Code Complete', 'Clean Code', 'The Pragmatic Programmer', 'Python Crash Course']

– Removing when you know the position to remove (using original list at top of
slide with two copies of Python Crash Course)

books.pop(2)

– Results in the books list being
– ['Python Crash Course', 'Game Programming', 'Clean Code', 'The Pragmatic Programmer', 'Python Crash Course']

– Remember list “indexes” start from zero

 15

 Index errors

● List Index
– We refer to the locations in the list using a list index

● If you try to use a location that doesn’t exist in a list, it is an index error
● So if we have the courses list again

courses = ["comp151", "comp152", "math130", "math120"]

● How many items are there?
●

 16

 Index errors

● List Index
– We refer to the locations in the list using a list index

● If you try to use a location that doesn’t exist in a list, it is an index error
● So if we have the courses list again

courses = ["comp151", "comp152", "math130", "math120"]

● How many items are there?
– Yup 4, and since we start from zero
– my_course = courses[4] will not have anything and will generate an error
– Courses[4] = “comp490” will generate the same error

 17

Reading and Assignment

● Read Chapter 3
– Though I deferred a couple of the topics from that chapter (sort for

example) till later

● Project?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

