
Recursion

 2

Admin

● Quiz paper
● Unfortunately recursion is not in this book.
● Last outcome that we haven’t done at all

 3

Solving problems with a smaller version of problem

● In Math
● many problems are solved using smaller versions of the same

problem
● Fibonacci numbers
● 1 1 2 3 5 8

● In Philosophy
● inductive proofs
● show base case is true
● show that each later case follows from simple step and earlier

case

 4

In Computer Science

● We can use the same inductive technique in our programming
● Recursion.
●

● Recursion:
● Solving a problem by using the solution to a simpler version of the

problem and a small additional bit of work

 5

Recursive Definitions

● Have you had a teacher tell you that you can’t use a word in its
own definition? This is a circular definition.

● In mathematics, recursion is frequently used. The most common
example is the factorial:

● For example, 5! = 5(4)(3)(2)(1), or 5! = 5(4!)
● Use board? since it often looks ugly cross platform on slide.

 6

Recursive Definitions

● Recursive definitions aren’t circular because they eventually have a
base case, that can be instantly computed without further work

● Every recursive solution has two parts
– A base case which can be instantly computed
– A recursive case, which does a little bit of work, and then calls the same

function to do a simpler (closer to the base case) version of the same
problem.

 7

Let’s try

● Try factorial with recursion
●

 8

a nice problem for recursion.

● Problem: test whether a sentence is a palindrome
● Palindrome: a string that is equal to itself when you reverse all

characters
– A man, a plan, a canal–Panama!
– Go hang a salami, I'm a lasagna hog
– Madam, I'm Adam

● how would you design a recursive solution to this problem?

 9

Sample code minus solution

● Let’s assume all of the non-
alphanumeric characters have
been removed – let’s build a
recursive function to check if that
string_to_check is a palindrome

def is_palindrome(string_to_check):

 #fill in here

 10

So what do we do first?

● What are the two parts of a
recursive solution?

 11

So what do we do first?

● What are the two parts of a
recursive solution?

● And which of those comes
first?

 12

So what do we do first?

● What are the two parts of a
recursive solution?

● And which of those comes
first?

● Base case
– Always has to be first

● Recursive case

 13

So what is a good base case?

● What is a good base case for
a recursive palindrome
checker?
– What string can you

determine immediately is (or
is not) a palindrome

 14

Recursive Case

● Once we have a base case(s)
we need our recursive case(s)

● Do a tiny bit of work, then make
a recursive call to do the rest
– Recursive call needs to be in

some way closer to the base
case.

● Lets work through the
example in pycharm

 15

Recursion and Iteration

● Recall recursive factorial and iterative factorial
– Anything you do with recursion you can do with iteration/looping
– And we saw that

● But sometimes one is better than the other.

 16

Lets try a recursive Fibonacci

● Remember
● fib(1) → 1
● fib(2) → 1
● fib(n) → fib(n-1)+fib(n-2)

● Lets implement that with a
recursive solution.

● And run it

 17

What happened?

● What happened?
– Recursive factorial worked fine
– But recursive fibonacci fell down

quickly

● Lets look at it in the board

 18

What happened?

● What happened?
– Recursive factorial worked fine
– But recursive fibonacci fell down

quickly

● Lets look at it in the board
● Moral of the story if more

than one recursive call is
working on the same data,
then it is going to be bad.

 19

Searching

● Searching through data:

– Looking for a particular value
in a collections

● Search through a list of
student records for one with
your banner id so you can
register

 20

Python built in search

● To check to see if a value is in a list or not (review from earlier in
the semester)

– If 'John' in names:
● #Hooray I'm here

– Use keyword in to check to see if some value is in a list.
– Returns true if value is in list, returns false otherwise
– Does a linear search of list. (show on board)

● The other way: If we know it is in the list and want to know where

– names.index('John')
– Use index method on list object.

 21

Searching for an object

● We have as list of students and a bannerId

– We want to find the student record in the list with just the bannerID
– The student record has the rest of the interesting stuff like GPA and

student name and more
– So how do we (humans) search?

 22

Searching for an object

● We have as list of students and a bannerId

– We want to find the student record in the list with just the bannerID
– The student record has the rest of the interesting stuff like GPA and

student name and more
– So how do we (humans) search?

● So you do it by flipping through and looking.
● Computer can't do that
– Without any assumptions

● Computer must begin from beginning and look through data to find it
● (this is what in and index do)

 23

Assumptions about data

● In the last slide I said without any assumptions about data

– But what if we can make assumptions about the data?
– How can we make it easier to search?

 24

Assumptions about data

● In the last slide I said without any assumptions about data

– But what if we can make assumptions about the data?
– How can we make it easier to search?
– If the data is ordered (sorted) then we don't have to look at every piece of

data
● We know by looking as one item, that lots of the data is either more than what we

are looking for or less than what we are looking for

 25

Sorting

● Many times you will have to sort a list

– Lots of algorithms only work when data is sorted
– In some CS courses we will do that ourselves

● Need to know how a car works before we can design one

– In most of the discipline we will use the built in sorting
– Warning to those of you in MIS

 26

So lets sort

● Python has two mechanisms for producing sorted lists

● List class has a sort method

– aList = [1,4,2,3]
– aList.sort() # list is now [1,2,3,4]

● Also sorted function

– Returns a sorted copy of the list leaving the original list unchanged

 27

Sorting something useful

● Sorting a list of integers is not interesting

– What if we want to sort that list of student objects?

– How will that work?
– Again – how will python know what to sort on? What does it mean for

one row to be larger than another?

 28

Find the largest

● First – a philosophical question what does it mean to be the
largest?

– With numbers that is easy right?
– Number furthest in the positive direction on the mythical number line

– What about strings?
– The one with the most characters

– What about student objects?
● Lets look at a student object on the board

 29

Find the largest

● First – a philosophical question what does it mean to be the
largest?

– With numbers that is easy right?
– Number furthest in the positive direction on the mythical number line

– What about strings?
– The one with the most characters

– What about student objects?
● Lets look at a student object on the board
● Sort based on GPA? Student ID, alphabetical by student name?

 30

● Sorting a list of integers is not interesting

– What if we want to sort that list of Student Objects?

– How will that work?
– Again – how will python know what to sort on? What does it mean for

one student to be larger than another?
● In the end, we have to tell python how we want it sorted.

 31

Defining a sort key

● If we can come up with a numeric sortable representation of
each object

– python can order the objects
– Define get_key

● Function should take an object (a student for us) and return a number for the
student object to be sorted on

● What should we use for our number for student objects?

 32

Defining a sort key

● If we can come up with a numeric sortable representation of
each object

– python can order the objects
– Define get_key

● Function should take an object (a student for us) and return a number for the
student object to be sorted on

● What should we use for our number for student objects?

 33

Defining get_key

● How will we define get_key?

– Make sure param and return value is right
– Remember we will be using a one instance variable for ordering

 34

Using get_key

● Now we need to sort on the new key

● sorted(aList, key=get_key)

● aList.sort(key=get_key)

● get_key is the name of the function

– get_key() calls the get key function
– get_key without () is a ‘pointer’ to the get_key function
– We want no parenthesis

 35

So now lets sort

● Lets use that to sort a list of
students.

 36

Binary Search

● Now lets implement binary search

– For the list of students

 37

Basic Algorithms

● How would be get the sum of all the items in the list?

– Without having the built in sum function to use?

 38

Average

● How would we find the
average GPA

 39

Median Size

● Suppose we want the median size

– Remember median from high school/middle school?
– So what do we need to do to find the median?
– So what do we need to do to find the median?
– We need the list sorted – otherwise we can't find the middle
– Lets look at that sorted list of students

 40

Now we can find the median

● Now we can find the median size image

– If even number lets just use the first of the two middle numbers
– yes I just made the math faculty twitch in terror

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

