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Admin

● Quiz paper
● Unfortunately recursion is not in this book.
● Last outcome that we haven’t done at all
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Solving problems with a smaller version of problem

● In Math
● many problems are solved using smaller versions of the same 

problem
● Fibonacci numbers
● 1 1 2 3 5 8 

● In Philosophy
● inductive proofs
● show base case is true
● show that each later case follows from simple step and earlier 

case
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In Computer Science

● We can use the same inductive technique in our programming
● Recursion.
●

● Recursion:
● Solving a problem by using the solution to a simpler version of the 

problem and a small additional bit of work
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Recursive Definitions

● Have you had a teacher tell you that you can’t use a word in its 
own definition? This is a circular definition.

● In mathematics, recursion is frequently used. The most common 
example is the factorial:

● For example, 5! = 5(4)(3)(2)(1), or  5! = 5(4!)
● Use board? since it often looks ugly cross platform on slide.
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Recursive Definitions

● Recursive definitions aren’t circular because they eventually have a 
base case, that can be instantly computed without further work

● Every recursive solution has two parts
– A base case which can be instantly computed
– A recursive case, which does a little bit of work, and then calls the same 

function to do a simpler (closer to the base case) version of the same 
problem.  
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Let’s try

● Try factorial with recursion
●
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a nice problem for recursion.

● Problem: test whether a sentence is a palindrome
● Palindrome: a string that is equal to itself when you reverse all 

characters 
– A man, a plan, a canal–Panama!
– Go hang a salami, I'm a lasagna hog
– Madam, I'm Adam

● how would you design a recursive solution to this problem?
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Sample code minus solution

● Let’s assume all of the non-
alphanumeric characters have 
been removed – let’s build a 
recursive function to check if that 
string_to_check is a palindrome 

def is_palindrome(string_to_check):

      #fill in here
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So what do we do first?

● What are the two parts of a 
recursive solution? 
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So what do we do first?

● What are the two parts of a 
recursive solution?

● And which of those comes 
first? 
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So what do we do first?

● What are the two parts of a 
recursive solution?

● And which of those comes 
first? 

● Base case
– Always has to be first

● Recursive case
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So what is a good base case?

● What is a good base case for 
a recursive palindrome 
checker?
– What string can you 

determine immediately is (or 
is not) a palindrome
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Recursive Case

● Once we have a base case(s) 
we need our recursive case(s)

● Do a tiny bit of work, then make 
a recursive call to do the rest
– Recursive call needs to be in 

some way closer to the base 
case.  

● Lets work through the  
example in pycharm
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Recursion and Iteration

● Recall recursive factorial and iterative factorial
– Anything you do with recursion you can do with iteration/looping
– And we saw that

● But sometimes one is better than the other.
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Lets try a recursive Fibonacci

● Remember
● fib(1) → 1
● fib(2) → 1
● fib(n) → fib(n-1)+fib(n-2)  

● Lets implement that with a 
recursive solution.

● And run it
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What happened?

● What happened?
– Recursive factorial worked fine
– But recursive fibonacci fell down 

quickly 

● Lets look at it in the board
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What happened?

● What happened?
– Recursive factorial worked fine
– But recursive fibonacci fell down 

quickly 

● Lets look at it in the board
● Moral of the story if more 

than one recursive call is 
working on the same data, 
then it is going to be bad.
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Searching

● Searching through data:

– Looking for a particular value 
in a collections

● Search through a list of 
student records for one with 
your banner id so you can 
register
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Python built in search

● To check to see if a value is in a list or not (review from earlier in 
the semester)

– If 'John' in names:
● #Hooray I'm here

– Use keyword in to check to see if some value is in a list. 
– Returns true if value is in list, returns false otherwise
– Does a linear search of list. (show on board)

● The other way: If we know it is in the list and want to know where

– names.index('John')
– Use index method on list object.  
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Searching for an object

● We have as list of students and a bannerId

– We want to find the student record in the list with just the bannerID
– The student record has the rest of the interesting stuff like GPA and 

student name and more
– So how do we (humans) search?
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Searching for an object

● We have as list of students and a bannerId

– We want to find the student record in the list with just the bannerID
– The student record has the rest of the interesting stuff like GPA and 

student name and more
– So how do we (humans) search?

● So you do it by flipping through and looking.
● Computer can't do that
– Without any assumptions

● Computer must begin from beginning and look through data to find it
● (this is what in and index do) 
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Assumptions about data

● In the last slide I said without any assumptions about data 

– But what if we can make assumptions about the data?
– How can we make it easier to search?



  24

Assumptions about data

● In the last slide I said without any assumptions about data 

– But what if we can make assumptions about the data?
– How can we make it easier to search?
– If the data is ordered (sorted) then we don't have to look at every piece of 

data 
● We know by looking as one item, that lots of the data is either more than what we 

are looking for or less than what we are looking for
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Sorting 

● Many times you will have to sort a list

– Lots of algorithms only work when data is sorted
– In some CS courses we will do that ourselves

● Need to know how a car works before we can design one

– In most of the discipline we will use the built in sorting 
– Warning to those of you in MIS
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So lets sort

● Python has two mechanisms for producing sorted lists

● List class has a sort method

– aList = [1,4,2,3]
– aList.sort() # list is now [1,2,3,4]

● Also sorted function

– Returns a sorted copy of the list leaving the original list unchanged
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Sorting something useful

● Sorting a list of integers is not interesting

– What if we want to sort that list of student objects?

– How will that work?
– Again – how will python know what to sort on? What does it mean for 

one row to be larger than another?
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Find the largest

● First – a philosophical question what does it mean to be the 
largest?

– With numbers that is easy right?
– Number furthest in the positive direction on the mythical number line

– What about strings?
– The one with the most characters

– What about student objects?
● Lets look at a student object on the board  
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Find the largest

● First – a philosophical question what does it mean to be the 
largest?

– With numbers that is easy right?
– Number furthest in the positive direction on the mythical number line

– What about strings?
– The one with the most characters

– What about student objects?
● Lets look at a student object on the board
● Sort based on GPA? Student ID, alphabetical by student name?  
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● Sorting a list of integers is not interesting

– What if we want to sort that list of Student Objects?

– How will that work?
– Again – how will python know what to sort on? What does it mean for 

one student to be larger than another?
● In the end, we have to tell python how we want it sorted.
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Defining a sort key

● If we can come up with a numeric sortable representation of 
each object 

– python can order the objects
– Define get_key

● Function should take an object (a student for us) and return a number for the 
student object to be sorted on

● What should we use for our number for student objects? 
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Defining a sort key

● If we can come up with a numeric sortable representation of 
each object 

– python can order the objects
– Define get_key

● Function should take an object (a student for us) and return a number for the 
student object to be sorted on

● What should we use for our number for student objects? 
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Defining get_key

● How will we define get_key?

– Make sure param and return value is right
– Remember we will be using a one instance variable for ordering
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Using get_key

● Now we need to sort on the new key

● sorted(aList, key=get_key)

● aList.sort(key=get_key)

● get_key is the name of the function

– get_key() calls the get key function
– get_key  without () is a ‘pointer’ to the get_key function
– We want no parenthesis 
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So now lets sort

● Lets use that to sort a list of 
students.
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Binary Search

● Now lets implement binary search

– For the list of students
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Basic Algorithms

● How would be get the sum of all the items in the list?

– Without having the built in sum function to use?
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Average

● How would we find the 
average GPA
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Median Size

● Suppose we want the median size

– Remember median from high school/middle school?
– So what do we need to do to find the median?
– So what do we need to do to find the median?
– We need the list sorted – otherwise we can't find the middle
– Lets look at that sorted list of students
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Now we can find the median

● Now we can find the median size image

– If even number lets just use the first of the two middle numbers
– yes I just made the math faculty twitch in terror
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