
Drawing and moving stuff

 2

Admin

● Project Questions?
● Quiz

 3

So far what have we drawn?

● This semester what have we drawn?
– Lucky Volunteer?

 4

So far what have we drawn?

● This semester what have we drawn?
– Shapes, that we can use for lots of useful things like graphs
– And use to draw pictures.

 5

Let’s move past basic shapes.

● In week 4/Project3 we drew shapes
– But it would be more useful to draw pictures
– You can get a lot more detail
– And outsource the art to the art people

 6

Image file formats

● There are lots of types of image files
– Like what?

 7

Image file formats

● There are lots of types of image files
– Like what?

● png, gif, webp
● Bmp, jpeg, tiff, svg

– And what is the difference between the first and second lines?

 8

Image file formats

● There are lots of types of image files
– Like what?

● png, gif, webp
● Bmp, jpeg, tiff, svg

– And what is the difference between the first and second lines?
● Transparent background
● I’ll push you toward png since it works with dearpygui on all platforms.

 9

First setup the window

● Let’s first draw a window with a
blue background
– Given what we know now, how do

we do that?
– Lucky volunteer

 10

First setup the window

● Let’s first draw a window
with a blue background
– Given what we know now,

how do we do that?

● Put up a window and draw a
blue rectangle over the
whole thing right?

● Is there anything here that
looks new or unfamiliar?

● Let’s try it.

import dearpygui.dearpygui as dpg
import comp151Colors

dpg.create_context()
WINDOW_SIZE = 800
with dpg.window(label="Tutorial"):
 with dpg.drawlist(width=WINDOW_SIZE,
height=WINDOW_SIZE):
 dpg.draw_rectangle((0,0), (WINDOW_SIZE, WINDOW_SIZE),
fill=comp151Colors.LIGHT_BLUE)

dpg.create_viewport(title='Drawing Demo',
width=WINDOW_SIZE, height=WINDOW_SIZE)
dpg.setup_dearpygui()
dpg.show_viewport()
dpg.start_dearpygui()
dpg.destroy_context()

 11

Now let’s add an image

● As we add the images,
– Grab the ship and gold pile images

from the resources page of the
website

– Put them in the project as before.
● In the main project folder for this

project

 12

Now let’s add an image

● To put an image on a dearpygui window, we need three parts
– Load the image
– Add the image to the ‘texture registry’ that dearpygui uses
– Actually draw the image in the draw list.

 13

Load the image

● To load the image
– Use dearpygui.load_image

● Takes one paremeter – the name of
the file

● Returns four things
– Width of the image
– Height of the image
– Channels (color information)
– The actual image in a format that

dearpygui likes.

● Examples of loading image
width, height, channels, dpg_shippict =
 dpg.load_image('ship.png')

pile_width, pile_heigh, pile_channels, pile_data =
 dpg.load_image('gold-pile.png')

● _

 14

Add to the texture registry

● You will add all of your images to a single texture registry.
– Holds all of the images for display on this window
– Use dearpygui.add_static_texture (there is also an add_dynamic_texture)

● Use four parameters, three positional and one by keyword
– Positional: width and height and picture in dearpygui format
– Keyword tag=’name’

● Name is what you will use to draw this later.

● Example
with dpg.texture_registry():
 dpg.add_static_texture(width, height, dpg_shippict, tag="ship_pict")
 dpg.add_static_texture(pile_width, pile_heigh, pile_data, tag="gold_pile")

 15

Drawing the picture

● To draw, in your drawlist add a call to draw_image
– Takes three positional arguments

● The name of the texture tag/image to draw
● The upper left corner to draw the image
● The lower right of the image to draw

– This lets us scale the image easily.

● Example
dpg.draw_image("ship_pict", (xloc, yloc), (xloc+width, yloc+height))

 16

Let’s draw this ship
● Code – new code since last time highlighted. (try scaling ship)

import dearpygui.dearpygui as dpg
import comp151Colors
dpg.create_context()
WINDOW_SIZE = 800
xloc = 100
yloc = 100
width, height, channels, dpg_shippict = dpg.load_image('ship.png') # 0: width, 1: height, 2: channels, 3: data
pile_width, pile_heigh, pile_channels, pile_data = dpg.load_image('gold-pile.png')
with dpg.texture_registry():
 dpg.add_static_texture(width, height, dpg_shippict, tag="ship_pict")
 dpg.add_static_texture(pile_width, pile_heigh, pile_data, tag="gold_pile")
with dpg.window(label="Tutorial"):
 with dpg.drawlist(width=WINDOW_SIZE, height=WINDOW_SIZE):
 dpg.draw_rectangle((0,0), (WINDOW_SIZE, WINDOW_SIZE), fill=comp151Colors.LIGHT_BLUE)
 dpg.draw_image("ship_pict", (xloc, yloc), (xloc+width, yloc+height))
dpg.create_viewport(title='Custom Title', width=800, height=600)
dpg.setup_dearpygui()
dpg.show_viewport()
dpg.start_dearpygui()
dpg.destroy_context()

 17

Now let’s move the ship

● First pass of moving the ship
– Add a tag to the draw image

dpg.draw_image("ship_pict", (xloc, yloc), (xloc+width, yloc+height), tag="ship_update")

– Then after the show_viewport do this
while dpg.is_dearpygui_running():
 xloc += 0.5
 dpg.configure_item('ship_update', pmin=(xloc, yloc), pmax=(xloc + width, yloc + height))
 dpg.render_dearpygui_frame()

● So lets try it and see.

 18

Now let’s move the ship

● First pass of moving the ship
– Add a tag to the draw image

dpg.draw_image("ship_pict", (xloc, yloc), (xloc+width, yloc+height), tag="ship_update")

– Then after the show_viewport do this
while dpg.is_dearpygui_running():
 xloc += 0.5
 dpg.configure_item('ship_update', pmin=(xloc, yloc), pmax=(xloc + width, yloc + height))
 dpg.render_dearpygui_frame()

● So lets try it and see.
– Hmmmmm, how do we fix that?
– Shall we bounce it or reset it to the left?

 19

Animation vs a program

● So far this is pretty much an animation
– Like a movie

● What do we need to add to make this a proper program?
– Lucky volunteer?

 20

Animation vs a program

● So far this is pretty much an animation
– Like a movie

● What do we need to add to make this a proper program?
– Some sort of input
– And what could we use for this kind of program?

● Volunteer?

 21

Animation vs a program

● So far this is pretty much an animation
– Like a movie

● What do we need to add to make this a proper program?
– Some sort of input
– And what could we use for this kind of program?

● Either mouse or keyboard.

 22

Keyboard input

● In Dearpygui,
– Keyboard input needs two things

● Register the keyhandler
● The key handler itself

 23

Keyboard input
● In Dearpygui, Keyboard input needs two things

● Register the keyhandler

with dpg.handler_registry():
 dpg.add_key_press_handler(callback=move_ship)

● The key handler itself For example

def move_ship(sender, app_data):
 key = app_data
 global xloc, yloc
 if key == dpg.mvKey_Left:
 xloc -= speed
 elif key == dpg.mvKey_Right:
 xloc += speed
 elif key == dpg.mvKey_Up:
 yloc -= speed
 elif key == dpg.mvKey_Down:
 yloc += speed
 with dpg.mutex():
 dpg.configure_item("ship_update", pmin=(xloc, yloc), pmax=(xloc + width, yloc + height))

The name of the function
to handle the key press

Put this near the texture
registry

You can name your function anything that makes sense
but these two params are required
The app_data for key callbacks is the key pressed

There are a bunch of key constants mvKey_XXX we can
check against

dpg.mutex() protects against updating the image in two
places at once. configure_item updates the image loc

 24

Putting it all together

import dearpygui.dearpygui as dpg
import comp151Colors

dpg.create_context()
WINDOW_SIZE = 800
xloc = 100
yloc = 100
speed = 3
def move_ship(sender, app_data):
 key = app_data
 global xloc, yloc
 if key == dpg.mvKey_Left:
 xloc -= speed
 elif key == dpg.mvKey_Right:
 xloc += speed
 elif key == dpg.mvKey_Up:
 yloc -= speed
 elif key == dpg.mvKey_Down:
 yloc += speed
 with dpg.mutex():
 dpg.configure_item("ship_update", pmin=(xloc, yloc), pmax=(xloc + width, yloc + height))

● Followed by
● width, height, channels, dpg_shippict = dpg.load_image('ship.png') # 0: width, 1:

height, 2: channels, 3: data
pile_width, pile_heigh, pile_channels, pile_data = dpg.load_image('gold-pile.png')
dpg.create_viewport(title='Custom Title', width=800, height=600)

with dpg.texture_registry():
 ship_id = dpg.add_dynamic_texture(width, height, dpg_shippict, tag="ship_pict")
 dpg.add_static_texture(pile_width, pile_heigh, pile_data, tag="gold_pile")
with dpg.handler_registry():
 dpg.add_key_press_handler(callback=move_ship)
dpg.set_frame_callback(dpg.get_frame_count()+1, move_ship)
with dpg.window(label="Tutorial"):
 with dpg.drawlist(width=WINDOW_SIZE, height=WINDOW_SIZE):
 dpg.draw_rectangle((0,0), (WINDOW_SIZE, WINDOW_SIZE),
fill=comp151Colors.LIGHT_BLUE)
 dpg.draw_image("ship_pict", (xloc, yloc), (xloc+width, yloc+height),
tag="ship_update")

dpg.setup_dearpygui()
dpg.show_viewport()
dpg.start_dearpygui()
dpg.destroy_context()

 25

Now let’s scatter some gold piles around

● To put them around – need to
generate ‘random’ numbers

 26

Random Numbers

● Random vs ‘pseudo-random’ numbers
● Python random package is in standard library
● Several useful functions

– random.randint(a, b)
● Returns a random integer from a to b

– random.choice(seq)
● Returns a randomly chosen element in the sequence seq (usually a list)

– random.uniform(a, b)
● Return a random floating point number N from a to b

 27

Placing the gold piles

● Let’s place the gold piles randomly around
– Make a list of the gold piles
– How will we represent these gold piles?

 28

Placing the gold piles

● Let’s place the gold piles randomly around
– Make a list of the gold piles
– How will we represent these gold piles?
– Possible

● A list of tuples (representing upper left hand corners)
● A list of dictionaries with corner location and more

– Value of gold piles?

● Lets use the tuples approach for now.

 29

def create_gold_piles(number):
 piles = []
 for i in range(number):
 pile_location = (random.randint(1,WINDOW_SIZE),
random.randint(1,WINDOW_SIZE))
 piles.append(pile_location)
 return piles

gold_piles = create_gold_piles(5)

I put this code near the top of the file below the
WINDOW_SIZE constant

● Then in the with drawlist
count = 0
for pile_location in gold_piles:
 dpg.draw_image("gold_pile", (pile_location[0],
pile_location[1]), (pile_location[0]+pile_width,
pile_location[1]+pile_height), tag=f"gold_pile{count}")
 count += 1

The highlighted section is all one line.

 30

Count the gold piles you hit

● We might want to remove gold
piles when ‘collected’
– Put a little more complicated
– And not needed for project 7
– So lets just count the ones we hit

● The next thing we need in order
to count number hit is?
– Lucky volunteer

 31

Count the gold piles you hit

● We might want to remove gold
piles when ‘collected’
– Put a little more complicated
– And not needed for project 7
– So lets just count the ones we hit

● The next thing we need in order
to count number hit is?
– Draw text on the screen
– Check for collisions

● Both are reasonable next steps

● Let’s do the text first.
● First we will create a new variable

near top of file
number_of_piles_collected = 0

● Now we need to draw the text.
– In the drawlist add something like

dpg.draw_text((20, 20),
 f"You've collected {number_of_piles_collected} gold piles",
 color=comp151Colors.DARK_RED, size=22)

– We will update later

 32

Check overlap

● We will check for overlap of the
two rectangles for the ship and
gold pile images
– Use a simple check from
– https://www.geeksforgeeks.org/dsa/f

ind-two-rectangles-overlap/

– We will adjust the example there to
work with tuples since we haven’t
done classes.

● Note that the original assumed
the y-origin was at the bottom, I
have adjusted that here
– Go ahead and grab this wholesale

def do_overlap(l1, r1, l2, r2):
 # If one rectangle is to the left of the other
 if l1[0] > r2[0] or l2[0] > r1[0]:
 return False

 # If one rectangle is above the other
 if r1[1] < l2[1] or r2[1] < l1[1]:
 return False

 return True

https://www.geeksforgeeks.org/dsa/find-two-rectangles-overlap/
https://www.geeksforgeeks.org/dsa/find-two-rectangles-overlap/

 33

One last bit

● To finish our example, let’s add a
‘horizon’
– Place where the sea meets the

evening sky.
– So we will shrink our blue

rectangle and add a light orange
one.

● And for the fun of it I added a setting
sun

● At the top of the file near the ship
locations

horizon_yloc = 150

● Update the blue rectangle code
to

dpg.draw_rectangle((0, 0), (WINDOW_SIZE, horizon_yloc),
fill=comp151Colors.LIGHT_ORANGE)

dpg.draw_circle((WINDOW_SIZE / 2, horizon_yloc), 70,
color=comp151Colors.RED, fill=comp151Colors.ORANGE)

dpg.draw_rectangle((0,horizon_yloc), (WINDOW_SIZE,
WINDOW_SIZE), fill=comp151Colors.LIGHT_BLUE)

 34

Sailing off into the sunset

● Now let’s tell the user they are
sailing off into the sunset if the
ship enters the sky area

● To do this, first draw some blank
text,
– put it right under the gold count

text

dpg.draw_text((200, 100), "",
color=comp151Colors.DARK_RED, size=20,
tag="message_update")

●

●

● Then let’s add a function to return
text based on where the ship is
(no text for sea)

def get_message():
 if yloc> horizon_yloc:
 return ""
 else: # the player has travelled up into the sky area
 return "You've sailed off into the sunset"

● Finally, in our move player
good_bye_text = get_message()

● Then in the with mutex section
dpg.configure_item("message_update", text=good_bye_text)

– Let’s try it

 35

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

