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1. Conditional Expectation

Let (Ω,F , P ) be a probability space and suppose thatA,B ∈ F with P (B) > 0. In undergraduate probability,

we learn that the probability of A conditional on B is de�ned as P (A |B ) = P (A∩B)
P (B) .

The idea is that if we learn that B has occurred, then the probability space must be updated to account

for this new information. In particular, the sample space becomes B, the σ-algebra now includes only

those events contained in B, FB = {E ∩ B : E ∈ F}, and the probability measure restricts to FB and is

normalized to account for this change. The formula for conditional probability is thus a description of how

the probability function changes when additional information dictates that the sample space should shrink.

(P (· |B ) also de�nes a probability on (Ω,F), and it is often more convenient to adopt this perspective.)

When thinking about conditional probability, it can be instructive to take a step back and think of a second

observer with access to partial information. Here we interpret (Ω,F , P ) as describing a random system

whose chance of being in state ω ∈ Ω is governed by P . F represents the possible conclusions that can be

drawn about the state of the system: All that can be said is whether it lies in A for each A ∈ F .

Now suppose that the observer has performed a measurement that tells her if B holds for some B ∈ F with

P (B) ∈ (0, 1). If she found out that B is true, her assessment of the probability of A ∈ F would be P (A |B ).

If she found that B is false, she would evaluate the probability of A as P
(
A |BC )

. Thus, from our point of

view, her description of the probability of A is given by the random variable

XA(ω) =

{
P (A |B ) , ω ∈ B

P
(
A |BC )

, ω /∈ B
.

This is ultimately the kind of idea we are trying to capture with conditional expectation.

The typical development in elementary treatments of probability is to apply the de�nition of P (A |B ) to

the events {X = x} and {Y = y} for discrete random variables X, Y in order to de�ne the conditional

mass function of X given that Y = y as pX(x |Y = y ) =
pX,Y (x,y)

pY (y) . One then extrapolates to absolutely

continuous X and Y by replacing mass functions with densities (which is problematic in that it treats pdfs

as probabilities and raises issues concerning conditioning on null events). Finally, conditional expectation is

de�ned in terms of integrating against the conditional pmfs/pdfs.

In what follows, we will need a more sophisticated theory of conditioning that avoids some of the pitfalls,

paradoxes, and limitations of the framework sketched out above. Rather than try to arrive at the proper

de�nition by way of more familiar concepts, we will begin with a formal de�nition and then work through a

variety of examples and related results in order to provide motivation, build intuition, and make connections

with ideas from elementary probability.

De�nition. Let (Ω,F , P ) be a probability space, X : (Ω,F) → (R,B) a random variable with E |X| < ∞,

and G ⊆ F a sub-σ-algebra. We de�ne E[X |G ], the conditional expectation of X given G, to be any random

variable Y satisfying

(i) Y ∈ G (i.e. Y is measurable with respect to G)
(ii)

∫
A
Y dP =

∫
A
XdP for all A ∈ G

If Y satis�es (i) and (ii), we say that Y is a version of E[X |G ].
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Our most immediate order of business is to show that this de�nition makes good mathematical sense by

proving existence and uniqueness theorems.

To streamline this task, we �rst take a moment to establish integrability for random variables which �t the

de�nition so that we may manipulate various quantities of interest with impunity.

Lemma 1.1. If Y satis�es conditions (i) and (ii) in the de�nition of E[X |G ], then it is integrable.

Proof. Letting A = {Y ≥ 0} ∈ G, condition (ii) implies∫
A

Y dP =

∫
A

XdP ≤
∫
A

|X| dP,∫
AC

(−Y )dP = −
∫
AC

Y dP = −
∫
AC

X =

∫
AC

(−X)dP ≤
∫
AC

|X| dP.

It follows that

E |Y | =
∫
A

Y dP +

∫
AC

(−Y )dP ≤
∫
A

|X| dP +

∫
AC

|X| dP = E |X| <∞. □

Our next result makes use of a famous theorem from analysis whose proof can be found in any text on

measure theory.

Theorem 1.1 (Radon-Nikodym). If µ and ν are σ-�nite measures on (S,S) with ν ≪ µ, then there is a

measurable function f : S → R such that ν(A) =
∫
A
fdµ for all A ∈ S.

f is called the Radon-Nikodym derivative of ν with respect to µ, written f = dν
dµ .

The following existence proof gives an interpretation of conditional expectation in terms of Radon-Nikodym

derivatives.

Theorem 1.2. Let (Ω,F , P ) be a probability space, X : (Ω,F) → (R,B) a random variable with E |X| <∞,

and G ⊆ F a sub-σ-algebra. There exists a random variable Y satisfying

(i) Y ∈ G
(ii)

∫
A
Y dP =

∫
A
XdP for all A ∈ G

Proof. First suppose that X ≥ 0. De�ne ν(A) =
∫
A
XdP for A ∈ G. Then P |G and ν are �nite measures on

(Ω,G). (That ν is countably additive is an easy application of the DCT.) Moreover, ν is clearly absolutely

continuous with respect to P . The Radon-Nikodym theorem therefore implies that there is a function dν
dP ∈ G

such that ∫
A

XdP = ν(A) =

∫
A

dν

dP
dP.

It follows that Y = dν
dP is a version of E[X |G ].

For general X, write X = X+−X− and let Y1 = E [X+ |G ], Y2 = E [X− |G ]. Then Y = Y1−Y2 is integrable
and G-measurable, so for all A ∈ G,∫

A

Y dP =

∫
A

Y1dP −
∫
A

Y2dP =

∫
A

X+dP −
∫
A

X−dP =

∫
A

XdP. □

* The proof of Theorem 1.2 is really a one-liner since the Radon-Nikodym theorem holds for signed measures

and ρ(A) =
∫
A
gdµ de�nes a signed measure for µ-integrable g.
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To conclude our discussion of the de�nition of conditional expectation, we record

Theorem 1.3. Y is unique up to null sets.

Proof. Suppose that Y ′ is also a version of E[X |G ].

Condition (ii) implies that ∫
A

Y ′dP =

∫
A

XdP =

∫
A

Y dP

for all A ∈ G.

By condition (i), the event Aε = {Y − Y ′ ≥ ε} is in G for all ε > 0, hence

0 =

∫
Aε

Y dP −
∫
Aε

Y ′dP =

∫
Aε

(Y − Y ′)dP ≥ εP (Y − Y ′ ≥ ε) .

It follows that Y ≤ Y ′ a.s. Interchanging the roles of Y and Y ′ in the preceding argument shows that Y ′ ≤ Y

a.s. as well, and the proof is complete. □

The following observation helps elucidate the sense in which uniqueness holds.

Proposition 1.1. If Y is a version of E[X |G ] and Y ′ ∈ G with Y = Y ′ a.s., then Y ′ is also a version of

E[X|G].

Proof. Since Y and Y ′ are G-measurable, E = {ω : Y (ω) ̸= Y ′(ω)} ∈ G. Since P (E) = 0, we see that for

any B ∈ G, ∫
B

XdP =

∫
B

Y dP =

∫
B∩E

Y dP +

∫
B\E

Y dP =

∫
B\E

Y dP

=

∫
B\E

Y ′dP =

∫
B\E

Y ′dP +

∫
B∩E

Y ′dP =

∫
B

Y ′dP. □

Lemma 1.1, Theorem 1.3, and Proposition 1.1 combine to tell us that conditional expectation is unique as an

element of L1(Ω,G, P ). Just as elements of Lp spaces are really equivalence classes of functions (rather than

speci�c functions) in classical analysis, conditional expectations are equivalence classes of random variables.

Here versions play the role of speci�c functions.

Often we will omit the �almost sure� quali�cation when speaking of relations between conditional expecta-

tions, but it is important to keep this issue in mind.

In light of Proposition 1.1, we can often work with convenient versions of E[X |G ] when we need to make

use of pointwise results.
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Examples.

Intuitively, sub-σ-algebras represent (potentially available) information � for each A ∈ G we can ask whether

or not A has occurred. From this perspective, we can think of E[X |G ] as giving the �best guess� for the

value of X given the information in G. The following examples are intended to clarify this view.

Example 1.1. If X ∈ G, then our heuristic suggests that E[X |G ] = X since if we know X, then our best

guess is X itself. This clearly satis�es the de�nition as X always satis�es condition (ii) and condition (i) is

met by assumption.

Since constants are measurable with respect to any σ-algebra, taking X = c shows that E[c |G ] = c.

Example 1.2. At the other extreme, suppose that X is independent of G � that is, for all A ∈ G, B ∈ B,
{X ∈ B} and A are independent events. In this case, G tells us nothing about X, so our best guess is E[X].

As a constant, E[X] automatically satis�es condition (i). To see that (ii) holds as well, note that for any

A ∈ G, ∫
A

E[X]dP = E[X]P (A) = E[X]E[1A] = E[X1A] =

∫
A

XdP

by independence.

In particular, ordinary expectation corresponds to conditional expectation w.r.t. G = {Ω, ∅}.

Example 1.3. We now expand upon our introductory example: Suppose that Ω1,Ω2, ... is a countable

partition of Ω into disjoint measurable sets, each having positive probability (e.g. B and BC). Let G =

σ(Ω1,Ω2, ...). We claim that E[X |G ] = P (Ωi)
−1E[X; Ωi] on Ωi. The interpretation is that G tells us which

Ωi contains the outcome, and given that information, our best guess for X is its average over Ωi.

To verify our claim, note that

E[X |G ](ω) =
∑
i

E[X; Ωi]

P (Ωi)
1Ωi

(ω)

is G-measurable since each Ωi belongs to G. Also, since each A ∈ G is a countable disjoint union of the Ωi's,

it su�ces to check condition (ii) on the elements of the partition. But this is trivial as∫
Ωi

P (Ωi)
−1E[X; Ωi]dP = E[X; Ωi] =

∫
Ωi

XdP.

If we make the obvious de�nition P (A |H ) = E[1A |H ], then the above says that

P (A |G ) = P (Ωi)
−1

∫
Ωi

1AdP =
P (A ∩ Ωi)

P (Ωi)
on Ωi.

6



Example 1.4. Conditioning on a random variable can be seen as a special case of our de�nition by taking

E[X |Y ] = E[X |σ(Y ) ]. To see how this compares with the de�nition given in undergraduate probability,

suppose that X and Y are discrete with joint pmf pX,Y and marginals pX , pY . Then σ(Y ) is generated by

the countable partition {Y = y}y∈Range(Y ), so the previous example shows that if E |X| <∞, then

E[X|Y ] = P (Y = y)−1E[X; {Y = y}] = 1

P (Y = y)

∑
x

xP (X = x, Y = y)

=
∑
x

x
pX,Y (x, y)

pY (y)

on {Y = y}.

Example 1.5. Similarly, suppose that X and Y are jointly absolutely continuous with joint density fX,Y

and marginals fX , fY . Suppose for simplicity that fY (y) > 0 for all y ∈ R. In this case, if E |g(X)| < ∞,

then E[g(X) |Y ] = h(Y ) where

h(y) =

∫
g(x)

fX,Y (x, y)

fY (y)
dx.

The Doob-Dynkin lemma shows that E[g(X) |Y ] ∈ σ(Y ). To see that the second criterion is satis�ed as

well, recall that every A ∈ σ(Y ) is of the form A = {Y ∈ B} for some B ∈ B. The change of variables

formula shows that∫
{Y ∈B}

h(Y )dP =

∫
B

h(y)fY (y)dy =

∫
1B(y)

(∫
g(x)

fX,Y (x, y)

fY (y)
dx

)
fY (y)dy

=

∫ ∫
g(x)1B(y)fX,Y (x, y)dxdy = E[g(X)1B(Y )] =

∫
{Y ∈B}

g(X)dP.

Note that the condition fY > 0 is actually unnecessary since the above proof only needs h to satisfy

h(y)fY (y) =

∫
g(x)fX,Y (x, y)dx,

so h can take on any value at those y with fY (y) = 0. (Since fY (y) =
∫
fX,Y (x, y)dx and fX,Y ≥ 0, the

right-hand side of the above equation will also be 0 at such y.)

Example 1.6. Suppose that X and Y are independent and φ satis�es E |φ(X,Y )| <∞. Then

E[φ(X,Y ) |X ] = g(X) where g(x) = E[φ(x, Y )].

As in the previous example, condition (i) is satis�ed by Doob-Dynkin, and condition (ii) can be veri�ed by

letting µ and ν denote the distributions of X and Y , respectively, and computing∫
{X∈B}

g(X)dP =

∫
B

g(x)dµ(x) =

∫
1B(x)

(∫
φ(x, y)dν(y)

)
dµ(x)

=

∫ ∫
1B(x)φ(x, y)d(µ× ν)(x, y) =

∫
1B(X)φ(X,Y )dP =

∫
{X∈B}

φ(X,Y )dP.
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Properties.

Many of the properties of ordinary expectation carry over to conditional expectation as they are ultimately

facts about integrals:

Proposition 1.2 (Linearity). E [aX + Y |G ] = aE [X |G ] + E [Y |G ]

Proof. Sums and constant multiples of G-measurable functions are G-measurable, and for any A ∈ G∫
A

(aE [X |G ] + E [Y |G ]) dP = a

∫
A

E [X |G ] dP +

∫
A

E [Y |G ] dP

= a

∫
A

XdP +

∫
A

Y dP =

∫
A

(aX + Y )dP. □

Proposition 1.3 (Monotonicity). If X ≤ Y , then E[X |G ] ≤ E[Y |G ].

Proof. By assumption, we have∫
A

E[X |G ]dP =

∫
A

XdP ≤
∫
A

Y dP =

∫
A

E[Y |G ]dP

for all A ∈ G. For all ε > 0, Aε = {ω : E[X |G ]− E[Y |G ] ≥ ε} ∈ G, so

εP (Aε) ≤
∫
Aε

(E[X |G ]− E[Y |G ]) dP =

∫
Aε

E[X |G ]dP −
∫
Aε

E[Y |G ]dP ≤ 0.

It follows that E[X |G ] ≤ E[Y |G ] a.s. □

Proposition 1.4 (Monotone Convergence Theorem). If Xn ≥ 0 and Xn ↗ X, then E[Xn |G ] ↗ E[X |G ].

Proof. By monotonicity, 0 ≤ E[Xn |G ] ≤ E[Xn+1 |G ] ≤ E[X |G ] for all n. (The inequalities are almost

sure, but we can work with versions of the conditional expectations where they hold pointwise.) Since

bounded nondecreasing sequences of reals converge to their limit superior, there is a random variable Y with

E[Xn |G ] ↗ Y .

Moreover, Y ∈ G as it is the limit of G-measurable functions.

Finally, applying the ordinary MCT to E[Xn |G ]1B ↗ Y 1B , invoking the de�nition of conditional expecta-

tion, and then applying the MCT to Xn1B ↗ X1B shows that

∫
B

Y dP = lim
n→∞

∫
B

E[Xn |G ]dP = lim
n→∞

∫
B

XndP =

∫
B

XdP

for all B ∈ G, hence Y is a version of E[X |G ]. □

Note that since we have established a conditional MCT, conditional versions of Fatou and dominated con-

vergence follow from the usual arguments.
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The �nal analogue we will consider is a conditional form of Jensen's inequality. It is fairly straightforward

to derive conditional variants of other familiar theorems using these examples as templates.

Proposition 1.5 (Jensen). If φ is convex and E |X| , E |φ(X)| <∞, then

φ (E[X |G ]) ≤ E[φ(X) |G ].

Proof. When we proved the original Jensen inequality, we established that if φ is convex, then for every

c ∈ R, there is a linear function lc(x) = acx+ bc such that lc(c) = φ(c) and lc(x) ≤ φ(x) for all x ∈ R.

Let S = {(ar, br)}r∈Q . Then S is countable with ax+ b ≤ φ(x) for all x ∈ R, (a, b) ∈ S. Moreover, since Q
is dense in R and convex functions are continuous, we have φ(x) = sup

(a,b)∈S

ax+ b for all x ∈ R.

Monotonicity and linearity imply that

E[φ(X) |G ] ≥ E[aX + b |G ] = aE[X |G ] + b a.s.

whenever (a, b) ∈ S.

As S is countable, the event A = {E[φ(X) |G ] ≥ aE[X |G ] + b for all (a, b) ∈ S} has full probability.

Thus with probability one, we have

E[φ(X) |G ] ≥ sup
(a,b)∈S

aE[X |G ] + b = φ (E[X |G ]) . □

One use for conditional expectation is as an intermediary for computing ordinary expectations. This is

justi�ed by the �law of total expectation�:

Proposition 1.6. E [E[X |G ]] = E[X].

Proof. Taking A = Ω in the de�nition of E[X |G ] yields

E[X] =

∫
Ω

XdP =

∫
Ω

E[X |G ]dP = E [E[X |G ]] . □

As an example of the utility of the preceding observation, we prove

Proposition 1.7. Conditional expectation is a contraction in Lp, p ≥ 1.

Proof. Since φ(x) = |x|p is convex, Proposition 1.5 implies that |E[X |G ]|p ≤ E [|X|p |G ]. Taking expecta-

tions and appealing to Proposition 1.6 gives

E [|E[X |G ]|p] ≤ E [E [|X|p |G ]] = E [|X|p] . □
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Proposition 1.6 is actually a special case of the �tower property� of conditional expectation.

This result is one of the more useful theorems about conditional expectation and is often summarized as

�The smaller σ-algebra always wins.�

Theorem 1.4. If G1 ⊆ G2, then

E [E[X |G1 ] |G2 ] = E [E[X |G2 ] |G1 ] = E[X |G1 ].

Proof.

Since E[X |G1 ] ∈ G1 ⊆ G2, Example 1.1 shows that E [E[X |G1 ] |G2 ] = E[X |G1 ].

To see that E [E[X |G2 ] |G1 ] = E[X |G1 ], we observe that E[X |G1 ] ∈ G1 and for any A ∈ G1 ⊆ G2,∫
A

E[X |G1 ]dP =

∫
A

XdP =

∫
A

E[X |G2 ]dP. □

* Proposition 1.6 is the case G1 = {Ω, ∅}, G2 = G.

The second criterion in our de�nition of conditional expectation can be expressed in more probabilistic

language as E[Y 1A] = E[X1A] for all A ∈ G. One sometimes sees the alternative criterion E[Y Z] = E[XZ]

for all bounded Z ∈ G. The equivalence of the two conditions follows from the usual four-step procedure for

building general integrals from integrals of indicators. We will stick with our original de�nition as it is easier

to check.

The following theorem (which Durrett describes as saying that �for conditional expectation with respect to

G, random variables Y ∈ G are like constants [in that] they can be brought outside the integral�) generalizes

this alternative de�nition.

Theorem 1.5. If W ∈ G and E |X| , E |WX| <∞, then E[WX |G ] =WE[X |G ].

Proof. WE[X |G ] ∈ G by assumption, so we need only check the second criterion.

We �rst suppose that W = 1B for some B ∈ G. Then for all A ∈ G,∫
A

WE[X |G ]dP =

∫
A

1BE[X |G ]dP =

∫
A∩B

E[X |G ]dP

=

∫
A∩B

XdP =

∫
A

1BXdP =

∫
A

WXdP.

By linearity, we see that the condition
∫
A
WE[X |G ]dP =

∫
A
WXdP also holds whenW is a simple function.

Now if W,X ≥ 0, we can take a sequence of simple functions Wn ↗W and use the MCT to conclude that∫
A

WE[X |G ]dP = lim
n→∞

∫
A

WnE[X |G ]dP

= lim
n→∞

∫
A

WnXdP =

∫
A

WXdP.

The general result follows by splitting W and X into positive and negative parts. □
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Our �nal major result about conditional expectation gives a geometric interpretation in the case of square

integrable X. Namely, noting that L2(F) = {Y ∈ F : E[Y 2] < ∞} is a Hilbert space and L2(G) is a closed

subspace of L2(F), we will show that if X ∈ L2(F), then E[X |G ] is the orthogonal projection of X onto

L2(G).

Theorem 1.6. If E[X2] < ∞, then E[X |G ] minimizes the mean square error E[(X − Y )2] amongst all

Y ∈ G.

Proof. To begin, we note that if Z ∈ L2(G), then E |ZX| <∞ by the Cauchy-Schwarz inequality, so Theorem

1.5 implies

ZE[X |G ] = E[ZX |G ].

Taking expected values gives

E [ZE[X |G ]] = E [E[ZX |G ]] = E[ZX],

showing that

E [Z (X − E[X |G ])] = E[ZX]− E [ZE[X |G ]] = 0

for Z ∈ L2(G).

Thus for any Y ∈ L2(G), if we set Z = E[X |G ]− Y , then we have

E
[
(X − Y )2

]
= E

[
((X − E[X |G ]) + Z)

2
]

= E
[
(X − E[X |G ])

2
]
+ 2E [Z (X − E[X |G ])] + E[Z2]

= E
[
(X − E[X |G ])

2
]
+ E[Z2].

(Proposition 1.7 shows that E[X |G ] ∈ L2(G), so Z = E[X |G ]− Y ∈ L2(G) as well.)

It follows that E
[
(X − Y )2

]
is minimized over L2(G) when E[X |G ]− Y = Z = 0.

To see that E[X |G ] minimizes the MSE over L0(G), we make use of the inequality

(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2a2 + 2b2.

If Y ∈ G is such that E[(X − Y )2] = ∞, then it certainly doesn't minimize the MSE since E[X |G ] ∈ L2(G)
with

E
[
(X − E[X |G ])

2
]
≤ 2E[X2] + 2E

[
E[X |G ]2

]
<∞,

and if E[(X − Y )2] <∞, then

E[Y 2] = E[((Y −X) +X)
2
] ≤ 2E[(X − Y )2] + 2E[X2] <∞. □

In some treatments of conditional expectation, the Radon-Nikodym approach is bypassed entirely by �rst

de�ning E[X |G ] for X ∈ L2(F) in terms of projection onto L2(G), and then extending the de�nition to

X ∈ L1(G) using approximating sequences of square integrable random variables. An upshot of this strategy

is that one can then prove the Radon-Nikodym theorem using martingales!

11



Regular Conditional Distributions.

Before moving on to martingales, we pause brie�y to discuss regular conditional distributions/probabilities.

Recall that if (Ω,F , P ) is a probability space, (S,S) is a measurable space, and X is an (S,S)-valued random

variable on (Ω,F , P ), then X induces the pushforward measure P ◦ X−1 on (S,S). The theory of regular

conditional distributions provides a conditional analogue of this construction.

To see how this works, suppose that G ⊆ F is a sub-σ-algebra. For any set A ∈ S, the conditional probability
of {X ∈ A} given G is given by the conditional expectation µ(ω,A) = E[1A(X) |G ](ω). As the notation

suggests, we are thinking of µ as a function µ : Ω× S → [0, 1].

We would like to know whether µ(ω, ·) de�nes a probability measure on (S,S) for P -a.e. ω ∈ Ω.

Note that for every A ∈ S, µ(·, A) is a.s. uniquely de�ned and we are free to modify µ(·, A) on null sets, so

linearity and monotone convergence imply that for any particular countable disjoint collection {An} ⊆ S,
we have

µ

(
ω,
⋃
n

An

)
= lim

n
E [1A1

(X) + ...+ 1An
(X) |G ] =

∑
n

µ (ω,An)

for a set of ω having probability 1.

The issue is that this event may depend on {An} and we want µ(ω, ·) to satisfy the countable additivity

condition for any collection {An} for P -a.e. ω. If there are too many di�erent countable collections, then

the exceptional sets might pile up to give a set having positive probability, or even a non-measurable set.

To address this issue properly, we set forth a formal de�nition.

De�nition. Let (Ω,F , P ) be a probability space, (S,S) a measurable space, G ⊆ F a sub-σ-algebra, and

X : (Ω,F) → (S,S) a random variable. A map µ : Ω × S → [0, 1] is said to be a regular conditional

distribution for X given G if

(i) For each A ∈ S, ω 7→ µ(ω,A) is a version of P (X ∈ A |G ),

(ii) For P -a.e. ω ∈ Ω, A 7→ µ(ω,A) is a probability measure on (S,S).

When (S,S) = (Ω,F) and X(ω) = ω, µ is called a regular conditional probability.

One reason such objects are of interest is that if µ is a regular conditional distribution for X given G, then
we can express conditional expectations of functions of X given G in terms of integrals against the r.c.d.

(just like the ordinary change of variables formula with distribution functions).

Theorem 1.7. Let (Ω,F , P ), (S,S), G, and X be as in the above de�nition. Let µ be a r.c.d. for X given

G. Then for any measurable f : (S,S) → (R,B) with E |f(X)| <∞, we have

E[f(X) |G ](ω) =

∫
f(x)µ(ω, dx) for P -a.e. ω

Proof. If f = 1B for some B ∈ S, then

E[f(X) |G ](ω) = E[1B(X) |G ](ω) = P (X ∈ B |G )(ω)

= µ(ω,B) =

∫
B

µ(ω, dx) =

∫
f(x)µ(ω, dx)

where the third equality (which is a.s.) is condition (i) in the de�nition of µ.
12



By linearity, the result holds for simple functions; by monotone convergence it holds for nonnegative functions;

and by consideration of positive and negative parts, it holds for integrable functions.

(In each of these three steps, there are only countably many null sets that need to be discarded.) □

Of course, for all of this to be worthwhile, it is necessary that r.c.d.s actually exist. Naively, one would just

take a version YA of P (X ∈ A |G ) for each A ∈ S and set µ(ω,A) = YA(ω). If F is �nite this is not a

problem as one can just modify each YA on a null set so that everything works out. But if F is in�nite,

then there are uncountably many YA's and the set
{
ω : there is some {An} with Y⋃

n An
(ω)̸=

∑
n YAn

(ω)
}

may have positive probability or not even lie in F no matter how the YA's are chosen. One can construct

examples where r.c.d.s fail to exist for essentially this reason.

However, the following theorem shows that if X takes values in a �nice� space (e.g. a complete and separable

metric space), then it has a r.c.d. given any sub-σ-algebra.

Theorem 1.8. If (Ω,F , P ) is a probability space, G ⊆ F is a sub-σ-algebra, (S,S) is a nice space, and X

is a (S,S)-valued random variable on (Ω,F , P ), then X has a r.c.d. given G.

Proof. By de�nition, there is a bijection φ : (S,S) → (R,B) with φ and φ−1 measurable.

Using monotonicity and throwing out a countable collection of null sets, we see that there is a set Ω0 ∈ F
with P (Ω0) = 1 and a family of random variables ω 7→ G(ω, q), q ∈ Q, such that ω 7→ G(ω, q) is a version of

P (φ(X) ≤ q |G ) with q 7→ G(ω, q) is nondecreasing for all ω ∈ Ω0.

As in the proof of Helly's selection theorem, if we de�ne F (ω, x) = inf{G(ω, q) : q > x}, then F (ω, ·) is a
distribution function for all ω ∈ Ω0.

* x 7→ F (ω, x) is nondecreasing since for any x < y, there is a rational x < r < y so, since G(ω, r) ≤ G(ω, s)

for r ≤ s,

F (ω, x) = inf{G(ω, q) : q > x} ≤ G(ω, r) ≤ inf{G(ω, q) : q > y} = F (ω, y);

x 7→ F (ω, x) is right continuous since for any x ∈ R, ε > 0, there is a rational q > x with G(ω, q) ≤ F (ω, x)+ε

and thus for any x < y < q,

F (ω, y) ≤ G(ω, q) ≤ F (ω, x) + ε;

and x 7→ F (ω, x) satis�es the appropriate boundary conditions since it is nondecreasing with supremum 1

and in�mum 0 by virtue of q 7→ G(ω, q) satisfying these boundary conditions.

(G(ω, ·) has the appropriate limits since 0 ≤ G(ω, q) ≤ 1 and
∫
G(ω, q)dP (ω) =

∫
1 {φ(X) ≤ q} dP which

goes to 0 or 1 as q goes to ∓∞ by monotone convergence.)

Thus each ω ∈ Ω0 gives rise to a unique measure ν(ω, ·) having distribution function F (ω, x) = ν (ω, (−∞, x]).

Also, monotone convergence shows that ω 7→ F (ω, x) is a version of P (φ(X) ≤ x |G ) for every x ∈ R. As one
readily checks that L = {B ∈ B : ν(ω,B) = P (φ(X) ∈ B |G )} a λ-system, it follows from the π-λ theorem

(with P = {(−∞, x] : x ∈ R}) that ν(ω,B) is a version of P (φ(X) ∈ B |G ).

To extract the r.c.d. in question, note that for any A ∈ S, {X ∈ A} = {φ(X) ∈ φ(A)}, so we can take

µ(ω,A) := ν (ω, φ(A)). □
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2. Martingales

With conditional expectation formally de�ned and its most important properties established, we are ready

to tackle the topic of discrete time martingales.

Recall that a �ltration is an increasing sequence of sub-σ-algebras F1 ⊆ F2 ⊆ · · · . (Really, the term �net�

is more appropriate than �sequence� since often one would like to consider uncountable index sets such as

[0, T ], but we are working in discrete time at the moment so the distinction is not important.)

We say that a collection of random variables {Xn}∞n=1 is adapted to the �ltration {Fn}∞n=1 if Xn ∈ Fn for

all n ∈ N.
Note that {Xn}n∈N is always adapted to the �ltration de�ned by Fn = σ(X1, ..., Xn). Indeed, if {Xn}n∈N is

adapted to {Gn}n∈N, then necessarily Gn ⊇ σ(X1, ..., Xn) .

De�nition 2.1. We say that a sequence {Xn}n∈N is a martingale with respect to the �ltration {Fn}n∈N if

for all n ∈ N

(i) E |Xn| <∞
(ii) Xn ∈ Fn

(iii) E [Xn+1 |Fn ] = Xn.

If condition (iii) is replaced with E [Xn+1 |Fn ] ≥ Xn, then we say that {Xn} is a submartingale.

If (iii) reads E [Xn+1 |Fn ] ≤ Xn, then we say that {Xn} is a supermartingale.

Note that, by de�nition, {Xn} is a martingale if and only if it is both a submartingale and a supermartingale.

Also, by linearity, if {Xn} is a submartingale, then {−Xn} is a supermartingale (and symmetrically).

Thus when one proves a theorem involving submartingales, say, there are immediate corollaries for martin-

gales and supermartingales.

The standard picture of a smartingale (the collective term for ordinary, sub-, and super- martingales) is in

terms of one's fortune after repeated bets (which need not be identical) on a game of unchanging odds.

A fair game corresponds to a martingale. If the odds are in the player's favor, then it corresponds to a

submartingale. If the odds are against the player, one has a supermartingale. (If the odds are always

for/against, then one still gets a sub/super-martingale even if they vary game to game.)

Example 2.1. We have already studied one martingale in some detail - simple random walk in one dimension.

Speci�cally, let ξ1, ξ2, ... be i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 , and let Xn =

∑n
i=1 ξi. As will be

our convention henceforth, when no �ltration is speci�ed, we will take {Fn} to be the natural �ltration

Fn = σ(X1, ..., Xn) so that condition (ii) is automatically satis�ed. The �rst condition is also satis�ed in

this case since |Xn| ≤ n. To see that this does indeed de�ne a martingale, we compute

E[Xn+1 |Fn ] = E[Xn + ξn+1 |Fn ] = E[Xn |Fn ] + E[ξn+1 |Fn ] = Xn + E[ξn+1] = Xn

where we used linearity of conditional expectation, Xn ∈ Fn, and ξn+1 independent of Fn.
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Example 2.2. More generally, if Xn =
∑n

i=1 ξi where the ξn's are independent, then an identical argument

shows that {Xn} is a martingale if E[ξn] = 0 for all n; a submartingale if E[ξn] ≥ 0 for all n; and a

supermartingale if E[ξn] ≤ 0 for all n.

Example 2.3. By linearity, if {X(1)
n }, ..., {X(m)

n } are martingales (w.r.t. a common �ltration {Fn}) and
α0, α1, ..., αm ∈ R, then the sequence de�ned by Xn = α0 +

∑m
i=1 αiX

(i)
n is a martingale. If α1, ..., αm ≥ 0

and {X(1)
n }, ..., {X(m)

n } are sub/super-martingales, then so is {Xn}.

Example 2.4. Let X be an integrable random variable on a �ltered probability space (Ω,F , {Fn}, P ).
De�ne Xn = E[X |Fn ]. We have

E |Xn| = E |E[X |Fn ]| ≤ E [E[|X| |Fn ]] = E |X| <∞

by Jensen's inequality and the law of total expectation;

Xn = E[X |Fn ] ∈ Fn

by de�nition of conditional expectation; and

E[Xn+1 |Fn ] = E [E[X |Fn+1 ] |Fn ] = E[X |Fn ] = Xn

by the tower property.

The interpretation is that X1, X2, ... represent increasingly better estimates of X as more information is

revealed.

Example 2.5. Let X1, X2, ... be i.i.d. with P (X1 = 0) = 1
2 , P (X1 = 2) = 1

2 . De�ne Mn =
∏n

i=1Xi. Then

{Mn} is a martingale with respect to Fn = σ(X1, ..., Xn) since E[Mn+1 |Fn ] =
1
2 (0 ·Mn) +

1
2 (2 ·Mn) =Mn.

Here we can think of Mn as representing the fortune of a gambler going �double or nothing� in a fair game

with an initial bet (at time 0) of 1 unit.

The same argument shows if X1, X2, ... are independent, bounded, and nonnegative, then Mn =
∏n

i=1Xi

de�nes a martingale provided that all multiplicands have mean 1.

When they all have mean at least 1 (respectively, at most 1), Mn is a submartingale (respectively, super-

martingale).

Example 2.6. The name martingale derives from a class of betting systems, the prototype of which is the

following: In a fair game with an initial bet of $1, double your bet after each loss and quit after your �rst

win.

Mathematically, suppose that ξ1, ξ2, ... are i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 and de�neMn recursively

by M0 = 0,

Mn+1 =

{
1, Mn = 1

Mn + 2nξn+1, else
.

Then {Mn} is adapted to F0 = {∅,Ω}, Fn = σ(ξ1, ..., ξn) by an induction argument, and is integrable since

|Mn| < 2n.
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It is thus a martingale since

E[Mn+1 |Fn ] = E [1 {Mn = 1}+ 1 {Mn ̸= 1} (Mn + 2nξn+1) |Fn ]

= 1 {Mn = 1}+ 1 {Mn ̸= 1} (Mn + 2nE[ξn+1 |Fn ])

= 1 {Mn = 1}+ 1 {Mn ̸= 1} (Mn + 2nE[ξn+1])

= 1 {Mn = 1}Mn + 1 {Mn ̸= 1}Mn =Mn.

Because you will eventually win with probability one and

2n −
n−1∑
i=0

2i = 2n − (2n − 1) = 1,

it seems that this strategy guarantees that you will come out ahead even though the game is fair.

Moreover, if 0 < P (ξ1 = 1) < P (ξ1 = −1), then the same analysis shows that {Mn} is a supermartingale,

but you will still eventually come out ahead.

The catch is that this trick only works if you have an in�nite line of credit and are allowed unlimited plays

and arbitrarily large wagers. We will see later that if such stipulations are missing, then there is no system

that will turn the odds of an unfair game in your favor.

* (Sub/Super)Harmonic Functions.

From the gambler's perspective, the de�nitions of sub- and super- martingales seem to be backwards (though

the names are apt from the house's point of view). In fact, the nomenclature has nothing to do with choosing

sides in this metaphor but rather arises from connections with potential theory.

Recall that if U is a domain (open connected set) in Rn then a continuous function h : U → R is said to be

harmonic on U if it satis�es Laplace's equation ∆h = 0 on U .

An important fact about harmonic functions is

Theorem 2.1 (Mean Value Formulas). h ∈ C2(U) is harmonic if and only if for every ball B(x, r) ⊆ U ,

h(x) =
1

|B(x, r)|

∫
B(x,r)

h(y)dy =
1

σ (∂B(x, r))

∫
∂B(x,r)

h(y)dS(y)

where |B(x, r)| = rnα(n) is the volume of the ball B(x, r) and σ (∂B(x, r)) = nα(n)rn−1 is the surface mea-

sure of the sphere ∂B(x, r); α(n) = |B(0, 1)| = π
n
2

Γ(n
2 +1)

.

Proof. Suppose that h is harmonic on U ⊇ B(x, r) and set

ϕ(r) :=
1

nα(n)rn−1

∫
∂B(x,r)

h(y)dS(y) =
1

nα(n)

∫
∂B(0,1)

h(x+ rz)dS(z)

Di�erentiating and appealing to the divergence theorem gives

ϕ′(r) =
1

nα(n)

∫
∂B(0,1)

∇h(x+ rz) · z dS(z) = 1

nα(n)rn−1

∫
∂B(x,r)

∇h(y) · y − x

r
dS(y)

=
1

nα(n)rn−1

∫
∂B(x,r)

∇h(y) · ν(y)dS(y) = 1

nα(n)rn−1

∫
B(x,r)

∆h(y)dy = 0.
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Since ϕ(r) is constant, we have

ϕ(r) = lim
r→0

1

nα(n)rn−1

∫
∂B(x,r)

h(y)dS(y) = h(x).

Radial integration gives

∫
B(x,r)

h(y)dy =

∫ r

0

(∫
∂B(x,s)

h dS

)
dr =

∫ r

0

ϕ(x)nα(n)sn−1ds = ϕ(x)α(n)rn.

For the converse, suppose that ∆h ̸≡ 0 on U . The there is some ball B(x, r) ⊆ U with, say, ∆h > 0 on

B(x, r). Taking ϕ as above yields the contradiction

0 = ϕ′(r) =
1

nα(n)rn−1

∫
B(x,r)

∆h(y)dy > 0. □

In other words, h is harmonic if and only if at each point in U , h is equal to its average over any ball in U

centered at that point and also to its average over any sphere centered at that point.

A function f : U → R is called subharmonic if it is upper semicontinuous (lim supx→x0
f(x) ≤ f(x0) for all

x0 ∈ U) and for each closed ball B(x, r) ⊆ U and each harmonic function h de�ned on a neighborhood of

B(x, r) for which f ≤ h on ∂B(x, r), one has f ≤ h on B(x, r).

* Note that the only harmonic functions in one dimension are linear functions, so subharmonic is the same

as convex when n = 1.

The analogue of Theorem 2.1 for subharmonic functions is

Theorem 2.2. An upper semicontinuous function f is subharmonic on a domain U ⊆ Rn if and only if

f(x) ≤ 1

|B(x, r)|

∫
B(x,r)

f(y)dy,
1

σ (∂B(x, r))

∫
∂B(x,r)

f(y)dS(y)

for every ball B(x, r) ⊆ U .

Proof sketch. If f is subharmonic, then it is u.s.c., so there is a sequence of continuous functions fn ↘ f .

For any B(x, r) ⊆ U , let hn be the harmonic function on B(x, r) with hn(x) = fn(x) on ∂B(x, r). (It is

known that the Dirichlet problem for the Laplace equation on a ball with continuous boundary values has a

classical solution). The mean value formula for harmonic functions and f ≤ fn = hn on ∂B(x, r) gives

f(x) ≤ hn(x) =
1

σ (∂B(x, r))

∫
∂B(x,r)

hn(y)dS(y) =
1

σ (∂B(x, r))

∫
∂B(x,r)

fn(y)dS(y)

for all n, and the result follows from the MCT since upper semicontinuous functions attain their maximum

on compact sets and thus the fn can be taken to be bounded from above. Radial integration takes care of

the integral over B(x, r).

Conversely, suppose that f satis�es the given inequality and there is x0 ∈ B(x, r) ⊆ U and some harmonic

function h with f ≤ h on ∂B(x, r) and f(x0) > h(x0). Without loss, we can assume that x0 maximizes f −h
on B(x, r).
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By assumption, we have

f(x0)− h(x0) ≤
1

|B(x0, s)|

∫
B(x0,s)

f(y)− h(y)dy

for su�ciently small s, so maximality implies that f(y)−h(y) = f(x0)−h(x0) for a.e. y in some neighborhood

of x0. A connectivity argument shows that f(y) − h(y) = f(x0) − h(x0) > 0 a.e. on B(x, r), contradicting

f ≤ h on ∂B(x, r) (as f − h is u.s.c.). □

A function g is superharmonic if and only if −g is subharmonic, so one has analogous mean value inequalities

for superharmonic functions.

Roughly, one thinks of martingales as corresponding to harmonic functions while submartingales (respec-

tively, supermartingales) correspond to subharmonic (respectively, superharmonic) functions. For example,

if f is subharmonic, then the value of f at x is at most the average of f over a neighborhood of x, which is

sort of similar to Xn ≤ E[Xn+1 |Fn ].

A concrete example of the correspondence between potential theory and martingales is that if {Bt}t≥0 is a

Brownian motion in Rn (which is a continuous-time martingale w.r.t. Ft = σ(Bs : s ≤ t) in the sense that

Bt ∈ L1(Ft) and E[Bt |Fs ] = Bs for 0 ≤ s ≤ t), then under certain integrability assumptions, Yt = h(Bt) is

a martingale (respectively, sub/super-martingale) if h is harmonic (respectively, sub/super-harmonic).

A more accessible connection is given by the following proposition

Proposition 2.1. Suppose f is continuous and subharmonic on Rd. Let ξ1, ξ2, ... be i.i.d. uniform on

B(0, 1), and de�ne Sn = x+
∑n

i=1 ξi for some x ∈ Rd. Then {f(Sn)} is a submartingale.

Proof. The implicit �ltration is Fn = σ(ξ1, ..., ξn) ∋ Sn, so, since continuous functions are measurable, f(Sn)

is adapted to Fn. Also, since Sn ∈ B(x, n) ⊆ B(x, n) by construction and continuous functions are bounded

on compact sets, E |f(Sn)| <∞. Finally, by the mean value inequality for subharmonic functions,

E [f(Sn+1) |Fn ] = E [f(Sn + ξn+1) |Fn ] =
1

|B(0, 1)|

∫
B(Sn,1)

f(y)dy ≥ f(Sn).

Here we are using the fact that if X ∈ G and Y is independent of G, then E[φ(X,Y ) |G ] = h(X) where

h(x) = E[φ(x, Y )]. □

First Results.

An easy but extremely important fact is that the martingale property is not limited to a single time step.

Theorem 2.3. If {Xn} is a submartingale, then for any n > m, E [Xn |Fm ] ≥ Xm.

Proof. When n = m+1, the result follows from the de�nition of a submartingale, so we may assume for the

purposes of an induction argument that E[Xm+k |Fm ] ≥ Xm. Then the tower property and monotonicity

give

E [Xm+k+1 |Fm ] = E [E[Xm+k+1 |Fm+k ] |Fm ] ≥ E [Xm+k |Fm ] ≥ Xm. □
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Corollary 2.1. If {Xm} is a supermartingale, then E [Xn |Fm ] ≤ Xm for any n > m, and if {Xm} is a

martingale, then E [Xn |Fm ] = Xm for any n > m.

Proof. The �rst claim follows from Theorem 2.3 by noting that {−Xm} is a submartingale, and the second

then follows since a martingale is both a submartingale and a supermartingale. □

The line of reasoning used in Corollary 2.1 applies to many of our subsequent results, so to avoid redundancy

we will often just state a theorem for submartingales or supermartingales with the corresponding statements

for the other cases taken as implicit.

Corollary 2.2. If {Xm} is a submartingale, then E [Xn] ≥ E [Xm] for any n > m, and analogously for

supermartingales and martingales.

Proof. Proposition 1.6, Theorem 2.3, and monotonicity imply

E [Xn] = E [E [Xn |Fm ]] ≥ E [Xm] . □

Keeping in mind that convex functions of one variable are subharmonic, the following results provide another

connection between smartingales and potential theory.

Theorem 2.4. If {Xn} is a martingale w.r.t. {Fn} and φ : R → R is a convex function with E |φ(Xn)| <∞
for all n, then {φ(Xn)} is a submartingale w.r.t. {Fn}.

Proof. φ(Xn) ∈ L1(Fn) by assumption and Jensen's inequality implies

E [φ(Xn+1) |Fn ] ≥ φ (E [Xn+1 |Fn ]) = φ(Xn)

since {Xn} is a martingale. □

Corollary 2.3. Let p ≥ 1 and suppose that {Xn} is a martingale such that E [|Xn|p] < ∞ for all n. Then

{|Xn|p} is a submartingale.

Proof. f(x) = |x|p is convex. □

Theorem 2.5. If {Xn} is a submartingale w.r.t. {Fn} and φ is a nondecreasing convex function with

E |φ(Xn)| <∞ for all n, then {φ(Xn)} is a submartingale w.r.t. {Fn}.

Proof. By Jensen's inequality and the assumptions,

E [φ(Xn+1) |Fn ] ≥ φ (E[Xn+1 |Fn ]) ≥ φ(Xn). □

Corollary 2.4. If {Xn} is a submartingale, then {(Xn − a)+} is a submartingale. If {Xn} is a super-

martingale, then {Xn ∧ a} is a supermartingale.

Proof. f(x) = x ∨ b is convex and nondecreasing, and − [(−x) ∨ (−a)] = x ∧ a. □
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In order to further develop the basic notions of martingale theory, we introduce the following de�nitions:

De�nition. Given a �ltration {Fn}∞n=0, we say that a sequence {Hn}∞n=1 is predictable (or previsible) if

Hn ∈ Fn−1 for all n ∈ N. That is, the value of Hn is determined by the information available at time n− 1.

De�nition. If {Xn}∞n=0 is a smartingale and {Hn}∞n=1 is predictable w.r.t. Fn = σ(X0, ..., Xn), the process

(H ·X)0 = 0,

(H ·X)n =

n∑
m=1

Hm (Xm −Xm−1) , n ≥ 1

is called the martingale transform of Hn with respect to Xn.

Note that the martingale transform is de�ned like a Riemann sum for the �integral� of H with respect to X.

With a bit of care, this analogy can be extended to develop a general theory of stochastic integration.

We typically think of {Hn} as a gambling strategy: If Xn represents the gambler's fortune at time n if the

stakes were $1 per game and Hn represents the amount wagered on the nth game (which can be based on

the outcomes of the �rst n − 1 games, but not on the outcome of game n), then (H ·X)n is the gambler's

fortune at time n when they bet according {Hn}.

As an example, take Xn =
∑n

i=0 ξi where ξ0 = 0 and ξ1, ξ2, ... are i.i.d. with P (ξ1 = 1) = p ∈ (0, 1),

P (ξ1 = −1) = 1− p, and set H1 = 1, Hn =

{
1, ξn−1 = 1

2Hn−1, ξn−1 = −1
for n ≥ 2.

This corresponds to our example of the martingale betting system, except that instead of quitting after a

win and walking away with one dollar, the process just starts over. Every win recovers the amount from the

last losing streak and one additional dollar to boot, so the gambler has a pro�t of $k after the kth win.

As the second Borel-Cantelli lemma ensures in�nitely many wins with probability one, the gambler can

eventually amass an arbitrarily large fortune no matter how much the odds are stacked against them.

However, the above reasoning is predicated on unrealistic assumptions such as in�nite credit and no table

limits. The ensuing results show that in practice there is no system for beating an unfavorable game.

Theorem 2.6. Suppose that {Xn}∞n=0 is a supermartingale. If Hn ≥ 0 is predictable and each Hn is bounded,

then (H ·X)n de�nes a supermartingale.

Proof. (H ·X)n is integrable since H is bounded and the Xm's are integrable, and it is adapted by construc-

tion. To see that it de�nes a supermartingale, we compute

E [(H ·X)n+1 |Fn ] = E [(H ·X)n +Hn+1(Xn+1 −Xn) |Fn ]

= E [(H ·X)n |Fn ] + E [Hn+1(Xn+1 −Xn) |Fn ]

= (H ·X)n +Hn+1E [Xn+1 −Xn |Fn ] ≤ (H ·X)n

where we used Hn+1, (H ·X)n ∈ Fn, Hn ≥ 0, and E [Xn+1 −Xn |Fn ] ≤ 0. □
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Of course, the argument in Theorem 2.6 also applies to submartingales and to martingales (without the

Hn ≥ 0 restriction in the latter case).

An important example of a predictable sequence is given by Hn = 1 {N ≥ n} where N is a stopping time.

The terminology is quite apt as the strategy is �stop gambling at time N .�

It is worth observing that (H ·X) is linear in H (and in X for that matter), so one can construct very general

betting systems using stopping times.

Note that if {Xn} is a supermartingale and Hn = 1 {N ≥ n}, then Theorem 2.6 shows that

(H ·X)n =

n∑
m=1

1 {N ≥ m} (Xm −Xm−1) = XN∧n −X0

is a supermartingale.

Since the constant sequence Yn = X0 is also a supermartingale and the sum of two supermartingales is a

supermartingale, we have

Corollary 2.5. If N is a stopping time and {Xn} is a supermartingale, then {XN∧n} is a supermartingale,

and similarly for submartingales and martingales.

Corollary 2.5 gives us our �rst �optional stopping theorem,� which explains why the martingale system

doesn't work if we can't play forever.

Theorem 2.7. If {Xn}∞n=0 is a supermartingale and N is a stopping time with N ≤ m a.s. for some m ∈ N,
then E[XN ] ≤ E[X0].

Proof. Under the above assumptions,

E[XN ] = E[XN∧m] ≤ E[X0]. □

Now suppose that Xn, n ≥ 0 is a submartingale. Fix a, b ∈ R with a < b and de�ne the sequence

N0, N1, N2, ... by N0 = −1 and for k ≥ 1,

N2k−1 = inf{m > N2k−2 : Xm ≤ a}

N2k = inf{m > N2k−1 : Xm ≥ b}.

The N ′
js are stopping times and {N2k−1 < m ≤ N2k} = {N2k−1 ≤ m− 1} ∩ {N2k ≤ m− 1}C ∈ Fm−1,

so Hm = 1 {N2k−1 < m ≤ N2k for some k ≥ 1} de�nes a predictable sequence.

By construction, XN2k−1
≤ a and XN2k

≥ b, so in the time interval [N2k−1, N2k], Xm crosses from below a

to above b.
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{Hm}∞m=1 is a gambling strategy which tries to take advantage of these �upcrossings�:

It turns on after Xm dips below a and turns o� once Xm rises above b. As the sum de�ning (H · X)m

telescopes in between these times, the contribution from an upcrossing starting at time N2k−1 and ending

at time N2k is XN2k
−XN2k−1

≥ b− a.

In stock market terms, this is like buying a share once its price is less than a and selling once it's greater

than b.

Letting Un = sup{k : N2k ≤ n} denote the number of upcrossings completed by time n and

Vn = sup{j : N2j−1 ≤ n} the number of upcrossings begun before time n, we see that

(H ·X)n ≥ Un(b− a) + 1 {Un < Vn}
(
Xn −XN2Vn−1

)
.

The following lemma extends this observation to bound the expected number of upcrossings by time n.

Lemma 2.1 (Upcrossing Inequality). If {Xm}∞m=0 is a submartingale, then

(b− a)E[Un] ≤ E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
.

Proof. Since φ(x) = x ∨ a is convex and nondecreasing, Ym = Xm ∨ a is a submartingale.

Also, Ym = a when Xm ≤ a and Ym = Xm when Xm > a, so Ym upcrosses [a, b] the same number of times

Xm does.

Moreover, Ym ≥ a = YN2Vn−1
implies

(H · Y )n ≥ Un(b− a) + 1 {Un < Vn}
(
Yn − YN2Vn−1

)
≥ Un(b− a).

Setting Km = 1−Hm, we have that {Km} is nonnegative, bounded, and predictable, so Corollary 2.2 and

the submartingale form of Theorem 2.6 yield

E[(K · Y )n] ≥ E [(K · Y )0] = 0.

Putting these facts together gives

(b− a)E[Un] ≤ E [(H · Y )n] = E [(1 · Y )n − (K · Y )n]

= E[Yn − Y0]− E[(K · Y )n] ≤ E[Yn]− E[Y0]

= E
[
(Xn − a)+ + a

]
− E

[
(X0 − a)+ + a

]
. □

The primary utility of the upcrossing inequality is to facilitate the proof of the pointwise martingale conver-

gence theorem, which shows that smartingales behave like monotone sequences of real numbers in that they

converge if appropriately bounded.

Essentially, the idea is to show that there is a set of full measure on which Xn upcrosses any interval [a, b]

with a, b ∈ Q only �nitely many times. This allows us to conclude that Xn has an almost sure limit.

Theorem 2.8 (Martingale Convergence). If {Xn} is a submartingale with supnE[X+
n ] < ∞, then there is

an integrable random variable X such that Xn → X a.s. as n→ ∞.
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Proof.

For any a, b ∈ Q with a < b, let Un be the number of upcrossings of [a, b] by time n, and let U = limn→∞ Un

be the number of upcrossings of the whole sequence. (U is a well-de�ned random variable because Un is

increasing.) Set M = supnE[X+
n ] <∞.

Since E [(X0 − a)+] ≥ 0 and E [(Xn − a)+] ≤ E [X+
n ] + |a| ≤M + |a|, Lemma 2.1 implies that

E[Un] ≤
1

b− a

(
E
[
(Xn − a)+

]
− E

[
(X0 − a)+

])
≤ M + |a|

b− a
for all n, so the monotone convergence theorem gives

E[U ] = lim
n→∞

E[Un] ≤
M + |a|
b− a

<∞,

and thus U <∞ a.s.

As the above holds for any [a, b] with a, b ∈ Q, and the set of intervals with rational endpoints is countable,

the event ⋃
a,b∈Q

{lim infnXn < a < b < lim supnXn}

has probability 0, hence lim supnXn = lim infnXn a.s.

Letting X denote this common value, Fatou's lemma shows that E[X+] ≤ lim infnE[X+
n ] < ∞, so X < ∞

a.s. To see that X > −∞ a.s., we observe that since {Xn} is a submartingale,

E[X−
n ] = E[X+

n ]− E[Xn] ≤ E[X+
n ]− E[X0],

so another application of Fatou's lemma gives

E[X−] ≤ lim inf
n

E[X−
n ] ≤ lim inf

n
E[X+

n ]− E[X0] <∞.

Thus Xn has a limit X ∈ R with E |X| = E[X+] + E[X−] <∞. □

An immediate corollary is

Corollary 2.6. If Xn ≥ 0 is a supermartingale, then as n→ ∞, Xn → X a.s. and E[X] ≤ E[X0].

Proof. Yn = −Xn is a submartingale with E[Y +
n ] = 0, so it follows from Theorem 2.8 that Yn → Y = −X

a.s. The inequality follows from Fatou's lemma and the supermartingale property:

E[X] ≤ lim inf
n

E[Xn] ≤ E[X0]. □

Of course, by considering Xn+K, one may replace non-negative with bounded from below in the preceding.

It is worth observing that the assumptions in Theorem 2.8 do not guarantee convergence in L1.

Example 2.7. Let S0 = 1, and for n ≥ 1, Sn = Sn−1 + ξn where ξ1, ξ2, ... are i.i.d. with P (ξ1 = 1) =

P (ξ1 = −1) = 1
2 . That is, Sn is a simple random walk started at 1. Let N = inf{n : Sn = 0} be the hitting

time of 0, and let Xn = Sn∧N be the walk stopped at 0. Then Xn is a nonnegative martingale, so Corollary

2.6 implies that it has an almost sure limit X. Clearly, we must have X = 0 a.s. since if Xn = k > 0, then

|Xn −Xn+1| = 1. However, E[Xn] = E[X0] = 1 for all n, so we can't have Xn → X in L1.
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We will provide criteria for convergence in Lp before long, but before doing so we have one more general

result to discuss, and then we will take some time to consider some examples in detail in order to better

understand the utility of martingale convergence.

The following decomposition result is due to Doob (like essentially everything else in the classical theory

of martingales) and can be useful for reducing questions about sub/super-martingales to questions about

martingales.

Theorem 2.9 (Doob Decomposition). Any submartingale {Xn}∞n=0 can be written in a unique way as

Xn =Mn +An where Mn is a martingale and An is a predictable increasing sequence with A0 = 0.

Proof. If Xn =Mn +An with E[Mn |Fn−1 ] =Mn−1 and An ∈ Fn−1, we must have

E[Xn |Fn−1 ] = E[Mn |Fn−1 ] + E[An |F n−1]

=Mn−1 +An = Xn−1 −An−1 +An.

The recursion

A0 = 0,

An −An−1 = E[Xn |Fn−1 ]−Xn−1

uniquely de�nes An and thus Mn = Xn −An.

It remains to establish existence by checking that An and Mn as de�ned above satisfy the assumptions.

To check that An is indeed increasing and predictable, we note that An −An−1 = E[Xn |Fn−1 ]−Xn−1 ≥ 0

since Xn is a submartingale, and An = E[Xn |Fn−1 ]−Xn−1 +An−1 ∈ Fn−1 by induction.

Finally, rewriting the recursion for An as E[Xn |Fn−1 ]−An = Xn−1 −An−1, we see that

E[Mn |Fn−1 ] = E[Xn −An |Fn−1 ] = E[Xn |Fn−1 ]−An = Xn−1 −An−1 =Mn,

so Mn is a martingale. □

The inspiration for the theorem is quite clear:

An =

n∑
k=1

(E[Xk |Fk−1] −Xk−1)

is the running sum of the amount by which E[Xn |Fn−1 ] overshoots Xn−1, and once these �drift terms� have

been subtracted o�, the remainder

Mn = X0 +

n∑
k=1

(Xk − E[Xk |Fk−1 ])

is a martingale.
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3. Applications

Bounded Increments.

Our �rst application of the martingale convergence theorem involves a generalization of the second Borel-

Cantelli lemma.

This will follow from a more general result concerning martingales with bounded increments:

They either converge or oscillate between ±∞.

Theorem 3.1. Suppose {Xn} is a martingale such that supn |Xn+1 −Xn| ≤M for some M ∈ R. Writing

C =
{

lim
n→∞

Xn exists in R
}
,

D =
{
lim sup
n→∞

Xn = ∞
}
∩
{
lim inf
n→∞

Xn = −∞
}
,

we have P (C ∪D) = 1.

Proof. Since Xn −X0 is a martingale, we may assume without loss of generality that X0 = 0.

For any 0 < K <∞, set N = inf {n : Xn ≤ −K}. Then Xn∧N is a martingale with Xn∧N ≥ −K −M a.s.,

so applying Corollary 2.6 to Xn∧N +K +M shows that Xn has a �nite limit on (almost all of) {N = ∞}.

Letting K → ∞ shows that limn→∞Xn exists a.s. on {lim infn→∞Xn > −∞}.

Applying the foregoing to −Xn shows that limn→∞Xn exists a.s. on {lim supn→∞Xn <∞}.

Thus, up to a null set, C = Ω \D. □

Corollary 3.1. Let {Fn}∞n=0 be a �ltration with F0 = {∅,Ω}, and let A1, A2, ... be events with An ∈ Fn.

Then (up to a null set)

{An i.o.} =

{ ∞∑
n=1

P (An |Fn−1 ) = ∞
}
.

Proof. Set X0 = 0 and Xn =
∑n

m=1 (1Am
− P (Am |Fm−1 )) for n ≥ 1. Then

E[Xn+1 |Fn ] = E
[
Xn + 1An+1

− P (An+1 |Fn ) |Fn

]
= Xn + E

[
1An+1

|Fn

]
)− P (An+1 |Fn ) = Xn,

so Xn is a martingale with |Xn+1 −Xn| =
∣∣1An+1 − P (An+1 |Fn )

∣∣ ≤ 1.

On C = {limn→∞Xn exists and is �nite}, we must have
∞∑

n=1

1Am
= ∞ if and only if

∞∑
n=1

P (An |Fn−1 ) = ∞,

and the same is true on D = {lim supnXn = ∞ and lim infnXn = −∞}.
This proves the result since P (C ∪D) = 1 by Theorem 3.1. □
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* Polya's Urn.

Suppose that an urn initially contains r red balls and g green balls. At each time step we remove a ball at

random, observe its color, and then replace it along with c other balls of the same color for some integer c.

Negative values of c correspond to removing balls, and in this case it is generally necessary to stop the

process once further removals become impossible.

Note that c = −1 corresponds to sampling without replacement and c = 0 corresponds to sampling with

replacement.

For positive values of c, each time a color is sampled increases the probability that it will be sampled in the

future. Such self-reinforcing behavior is sometimes described by the phrase �the rich get richer.� (Of course,

the opposite holds when c is negative.)

We will assume henceforth that c > 0 so that the process can be continued inde�nitely and so we can divide

by c when convenient.

To make the foregoing rigorous, let ξn = 1 {green ball drawn at time n}. The �rst observation is that the

sequence ξ1, ξ2, ..., though certainly not independent, is exchangeable - for any n ∈ N, σ ∈ Sn, (ξ1, ..., ξn) =d(
ξσ(1), ..., ξσ(n)

)
.

To gain intuition, we compute P (ξ1 = 1, ξ2 = 0, ξ3 = 0) = P (ξ1 = 0, ξ2 = 1, ξ3 = 0):

Using elementary conditional probability, the left-hand side is
(

g
r+g

)(
r

r+g+c

)(
r+c

r+g+2c

)
and the right-hand

side is
(

r
r+g

)(
g

r+g+c

)(
r+c

r+g+2c

)
. The successive denominators are constant and the numerator are just

permuted.

More generally,

P (ξ1 = 1, ..., ξm = 1, ξm+1 = 0, ..., ξn = 0)

=

(
g

g + r

)
· · ·
(

g + (m− 1)c

g + r + (m− 1)c

)(
r

g + r +mc

)
· · ·
(
r + (n−m− 1)c

g + r + (n− 1)c

)
,

which is the same as P (ξ1 = 1S(1), ..., ξn = 1S(n)) for any other S ⊆ [n] with |S| = m.

Now let Xn =
∑n

i=1 ξn be the number of green balls drawn at time n. The preceding discussion shows that

for any 0 ≤ m ≤ n, P (Xn = m) =
(
n
m

)
pn,m where

pn,m = P (ξ1 = 1, ..., ξm = 1, ξm+1 = 0, ..., ξn = 0) =

m−1∏
i=0

(g + ic)

n−m−1∏
j=0

(r + jc)

n−1∏
k=0

(g + r + kc)

=

m−1∏
i=0

(
g
c + i

) n−m−1∏
j=0

(
r
c + j

)
n−1∏
k=0

(
g+r
c + k

) =

Γ( g
c+m)Γ( r

c+n−m)
Γ( g

c )Γ(
r
c )

Γ( g+r
c +n)

Γ( g+r
c )

=
Γ
(
g
c +m

)
Γ
(
r
c + n−m

)
Γ
(
g+r
c + n

) ·
Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

) .
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Consequently, we have

P (Xn = m) =

(
n

m

)
pn,m =

Γ(n+ 1)

Γ(m+ 1)Γ(n−m+ 1)
pn,m

=
Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

) · Γ (m+ g
c

)
Γ(m+ 1)

·
Γ
(
n−m+ r

c

)
Γ(n−m+ 1)

· Γ(n+ 1)

Γ
(
n+ g+r

c

) .
Stirling's approximation, Γ(x+ 1) ≈

√
2πx

(
x
e

)x
, implies

Γ(x+ a)

Γ(x+ b)
≈
√
2π(x+ a− 1)

(
x+a−1

e

)x+a−1√
2π(x+ b− 1)

(
x+b−1

e

)x+b−1
≈
(
1 + a−1

x

)x+a−1(
1 + b−1

x

)x+b−1

(x
e

)a−b

≈ ea−b
(x
e

)a−b

= xa−b,

so

nP (Xn = m) ≈ n
Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

)m g
c−1(n−m)

r
c−1n1−

g
c−

r
c =

Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

) (m
n

) g
c−1 (

1− m

n

) r
c−1

,

and thus

nP (Xn = m) →
Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

)x g
c−1(1− x)

r
c−1

as m,n→ ∞ with m
n → x.

It follows that for any 0 < x < 1,

P

(
Xn

n
≤ x

)
= P (Xn ≤ nx) = P (Xn = 0) + P (Xn = 1) + ...+ P (Xn = ⌊nx⌋)

=

∫ ⌊nx⌋+1

0

P (Xn = ⌊y⌋)dy =

∫ ⌊nx⌋+1
n

0

nP (Xn = ⌊nu⌋)du

→
∫ x

0

Γ
(
g+r
c

)
Γ
(
g
c

)
Γ
(
r
c

)u g
c−1(1− u)

r
c−1du

as n→ ∞.

This shows that
Xn

n
⇒ Beta

(g
c
,
r

c

)
, which implies that the fraction of green balls at time n, Yn =

g + cXn

g + r + cn
,

satis�es

Yn =
Xn

n

(
cn

r + g + cn

)
+

g

g + r + cn
⇒ Beta

(g
c
,
r

c

)
.

The martingale convergence theorem allows us to strengthen this conclusion to almost sure convergence:

If we can show that Yn ≥ 0 is a martingale, then it will follow from Corollary 2.6 that it has an almost sure

limit Y , which necessarily has the Beta
(
g
c ,

r
c

)
distribution by the previous argument.

The obvious �ltration in this case is Fn = σ(ξ1, ..., ξn). Yn is adapted by the Doob-Dynkin Lemma and is

integrable since 0 ≤ Yn ≤ 1, so it remains only to show that E[Yn+1 |Fn ] = Yn.

To see that this is so, we observe that on

{
Yn =

gn
gn + rn

}
,

E [Yn+1 |Fn ] =
gn + c

gn + rn + c
· gn
gn + rn

+
gn

gn + rn + c
· rn
gn + rn

=
gn(gn + c+ rn)

(gn + rn + c)(gn + rn)
=

gn
gn + rn

= Yn.
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Branching Processes.

Let {ξni }i,n∈N be an array of i.i.d. N0-valued random variables. De�ne the sequence Z0, Z1, ... by Z0 = 1 and

Zn+1 =

{
ξn+1
1 + ...+ ξn+1

Zn
, Zn > 0

0, Zn = 0
.

Zn is called a Galton-Watson process, and the interpretation is that Zn gives the population size of the nth

generation where each individual gives birth to an identically distributed number of o�spring and then dies.

pk = P (ξni = k) is called the o�spring distribution.

One can come up with many natural variants on this problem by changing assumptions such as i.i.d. o�spring

variables or one generation life-spans, but we will content ourselves with the simplest case here.

Our ultimate goal is to show that the mean of the o�spring distribution determines whether or not the

population is doomed to extinction. Speci�cally, if the population is to have a chance of surviving inde�nitely,

then the number of births must exceed the number of deaths on average.

In order to prove this unsurprising yet nontrivial claim, we �rst establish

Lemma 3.1. Let Fn = σ(ξmi : i ≥ 1, 1 ≤ m ≤ n) and µ = E[ξni ] ∈ (0,∞). Then Mn :=
Zn

µn
is a martingale

with respect to Fn.

Proof. Mn is adapted by construction and integrable by an induction argument using the ensuing computa-

tion. Linearity, monotone convergence, and the de�nition of Fn imply

E[Zn+1 |Fn ] = E

[ ∞∑
k=0

Zn+11 {Zn = k} |Fn

]
=

∞∑
k=0

E[Zn+11 {Zn = k} |Fn ]

=

∞∑
k=1

E
[(
ξn+1
1 + ...+ ξn+1

k

)
1 {Zn = k} |Fn

]
=

∞∑
k=1

1 {Zn = k}E
[
ξn+1
1 + ...+ ξn+1

k

]
=

∞∑
k=1

1 {Zn = k} kµ = µZn,

and the result follows upon division by µn+1. □

Since Mn is a nonnegative martingale, it has a �nite almost sure limit M∞. We begin by identifying cases

where M∞ = 0.

Theorem 3.2. If µ < 1, then Mn, Zn → 0 a.s.

Proof. Since Mn →M∞ ∈ R a.s. and µn → 0, we have that Zn = µnMn → 0 ·M∞ = 0 a.s.

Because Zn is integer valued and converges to 0 a.s., we must have that Zn(ω) = 0 for all large n (depending

on ω) for almost every ω ∈ Ω. It follows that Mn = Zn

µn is eventually 0, hence M∞ = 0. □

It makes sense that if the population has more deaths than births on average, then it will eventually die out.
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The next result shows that if we exclude the trivial case where every individual has one o�spring with full

probability, then the same is also true if, on average, each individual replaces themselves before dying.

Theorem 3.3. If µ = 1 and P (ξni = 1) < 1, then Zn → 0 a.s.

Proof. When µ = 1, Zn =Mn converges almost surely to some �nite Z∞.

Because Zn ∈ N0, we must have that Zn = Z∞ for n ≥ N(ω).

If P (ξni = 1) < 1, then µ = 1 implies that P (ξni = 0) > 0, so for each k ∈ N, P (ξn1 = ... = ξnk = 0 i.o.) = 1

by the second Borel-Cantelli lemma. Thus for any k,N ∈ N,

P (Zn = k for all n ≥ N) ≤ 1− P (ξn1 = ... = ξnk = 0 for some n > N) = 0,

so it must be the case that Z∞ = 0. □

It is worth observing that since Mn =
Zn

µn
is a martingale, E

[
Zn

µn

]
= E

[
Z0

µ0

]
= 1, hence E[Zn] = µn.

Thus when µ < 1, Zn → 0 (exponentially fast) in L1. However, when µ = 1, E[Zn] = E[Z0] = 1 for all n, so

Zn does not converge in L1.

In the µ ≤ 1 cases, we were able to conclude not only that Zn → 0 a.s., but also that Mn → 0 a.s.

When µ > 1, we will show that there is positive probability that the population never goes extinct, but we

point out that this does not enable us to conclude that M∞ is nonzero with positive probability. Necessary

and su�cient conditions for this to occur are stated in Durrett.

Theorem 3.4. If µ > 1, then P (Zn > 0 for all n) > 0.

Proof. For s ∈ [0, 1], let

G(s) = E
[
sξ

n
i

]
=

∞∑
k=0

pks
k

be the probability generating function for the o�spring distribution.

As
∑∞

k=0 pks
k is a power series whose interval of convergence contains [−1, 1], we may di�erentiate termwise

to obtain

G′(s) =

∞∑
k=1

kpks
k−1 ≥ 0

G′′(s) =

∞∑
k=2

k(k − 1)pks
k−2 ≥ 0

for s ∈ [0, 1).

Since the DCT implies that lims→1− G
′(s) =

∑∞
k=1 kpk = µ > 1, there is a k ≥ 2 such that pk > 0, hence

G′(s), G′′(s) > 0 for s ∈ (0, 1).

The reason we care about the p.g.f. is that the proof relies on showing that the probability of extinction is

given by the unique �xed point of G in [0, 1).
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Claim (a). If θm = P (Zm = 0), then θm =
∑∞

k=0 pkθ
k
m−1 = G(θm−1).

Proof. If Z1 = k, which happens with probability pk, then Zm = 0 if and only if all k lineages die out in the

next m − 1 time steps. By independence, this happens with probability θkm−1. Summing over the di�erent

possibilities for k establishes the claim. □

Our next step is to establish the existence and uniqueness of the purported �xed point:

Claim (b). There is a unique ρ < 1 such that G(ρ) = ρ.

Proof. Since lims→1− G
′(s) = µ > 1, and G′ is continuous on [0, 1), there is an ε > 0 such that G′(s) > 1 on

(1− ε, 1). As G is continuous on [1− ε, 1] and G(1) = 1, the mean value theorem implies that

1−G(s) = G(1)−G(s) = G′(c)(1− s) > 1− s,

hence G(s) < s, on (1− ε, 1).

Also, G(0) = p0 ≥ 0. If G(0) = 0, take ρ = 0. Otherwise, letting F (x) = G(x) − x, we have F (0) > 0 and

F (1− ε
2 ) < 0, so the existence of ρ follows from the intermediate value theorem.

To see that this is the only �xed point less than 1, observe that G′′ > 0 on (0, 1), so G is strictly convex and

thus for any x ∈ (ρ, 1),

G(x) = G (λρ+ (1− λ) · 1) < λG(ρ) + (1− λ)G(1) = λρ+ (1− λ) · 1 = x.

There can be no �xed point in (0, ρ) either as the above computation (with x and ρ interchanged) would

then imply that G(ρ) < ρ. □

The �nal step is to show that ρ is indeed the extinction probability:

Claim (c). θm ↗ ρ as m↗ ∞.

Proof. θn = G(θn−1) is an increasing sequence because θ0 = 0 ≤ G(0) = θ1 and G′(x) ≥ 0 for x ≥ 0.

Similarly, supn θn ≤ ρ since θ0 = 0 ≤ ρ and θm ≤ ρ implies θm+1 = G(θm) ≤ G(ρ) = ρ.

As θn is a bounded increasing sequence, it converges to some θ∞ ≤ ρ, so, since G is continuous, we have

θ∞ = lim
n→∞

θn = lim
n→∞

G(θn−1) = G(θ∞).

Because θ∞ ≤ ρ is a �xed point of G, the previous claim implies θ∞ = ρ. □

Finally, {Zm = 0} ⊆ {Zm+1 = 0} for all m, so continuity from below implies

P (Zn = 0 for some n) = P

( ∞⋃
m=1

{Zm = 0}

)
= lim

m→∞
P (Zm = 0)

= lim
m→∞

θm = ρ < 1

and the proof is complete. □
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4. Lp Convergence

In order to obtain an Lp version of Theorem 2.8 we begin with a generalization of Theorem 2.7.

Theorem 4.1. If Xn is a submartingale, M and N are stopping times with M ≤ N , and there is a k ∈ N
with P (N ≤ k) = 1, then E[XM ] ≤ E[XN ].

Proof. Since {M < n ≤ N} = {M ≤ n − 1} ∩ {N ≤ n − 1}C ∈ Fn−1, Kn = 1 {M < n ≤ N} ≥ 0 is

predictable, hence

(K ·X)n =

n∑
m=1

1 {M < m ≤ N} (Xm −Xm−1) =

N∧n∑
m=M∧n+1

(Xm −Xm−1) = XN∧n −XM∧n

is a submartingale.

Consequently,

E[XN ]− E[XM ] = E[XN∧k]− E[XM∧k] = E [(K ·X)k] ≥ E [(K ·X)0] = 0. □

In particular, we have

Corollary 4.1. If Xn is a submartingale and N is a stopping time with P (N ≤ k) = 1 for some k ∈ N,
then E[X0] ≤ E[XN ] ≤ E[Xk].

Proof. For the �rst inequality, take M = 0 in Theorem 4.1.

For the second, take M = N , N = k. □

Our next step in proving the Lp martingale convergence theorem is

Theorem 4.2 (Doob's Inequality). Let Xn be a submartingale, X̃n = max
0≤m≤n

X+
m, λ > 0, and A =

{
X̃n ≥ λ

}
.

Then

λP (A) ≤ E[Xn1A] ≤ E[X+
n 1A] ≤ E[X+

n ].

Proof. Let N = inf {m : Xm ≥ λ} ∧ n. If ω ∈ A, then there is a smallest m ≤ n such that

λ ≤ Xm(ω) = XN(ω)(ω).

Also, since XN = Xn on AC , Corollary 4.1 implies

E[XN1A] + E[Xn1AC ] = E[XN1A] + E[XN1AC ] = E[XN ] ≤ E[Xn] = E[Xn1A] + E[Xn1AC ].

Thus, as in the proof of Chebychev's inequality, we have

λP (A) = E[λ1A] ≤ E[XN1A] ≤ E[Xn1A].

The other inequalities are trivial since Xn1A ≤ X+
n 1A ≤ X+

n . □
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A tangential application of Doob's inequality is

Theorem 4.3 (Kolmogorov's Maximal Inequality). If ξ1, ξ2, ... are independent with E[ξi] = 0 and

Var(ξi) ∈ (0,∞), then Sn =
∑n

i=1 ξi satis�es

P

(
max

1≤m≤n
|Sn| ≥ x

)
≤ x−2Var(Sn) for all x > 0.

Proof. S2
n is a submartingale (by convexity), so taking λ = x2 in Theorem 4.2 gives

x2P

(
max

1≤m≤n
|Sn| ≥ x

)
= x2P

(
max

1≤m≤n
S2
n ≥ x2

)
≤ E

[
S2
n

]
= Var(Sn). □

More important for the task at hand is

Theorem 4.4 (Lp Maximum Inequality). If Xn is a submartingale, then for all 1 < p <∞,

E
[
X̃p

n

]
≤
(

p

p− 1

)p

E
[(
X+

n

)p]
.

Proof. For any �xed M > 0, we have

{
X̃n ∧M ≥ λ

}
=

{ {
X̃n ≥ λ

}
, M ≥ λ

∅, M < λ
,

so the layer cake representation, Doob's inequality, Tonelli's theorem, and Hölder's inequality give

E
[(
X̃n ∧M

)p]
=

∫ ∞

0

pλp−1P
(
X̃n ∧M ≥ λ

)
dλ

=

∫ M

0

pλp−1P
(
X̃n ≥ λ

)
dλ

≤
∫ M

0

pλp−1

(
1

λ

∫
X+

n 1
{
X̃n ≥ λ

}
dP

)
dλ

=

∫
X+

n

∫ X̃n∧M

0

pλp−2dλ dP

=
p

p− 1

∫
X+

n

(
X̃n ∧M

)p−1

dP

=
p

p− 1
E

∣∣∣∣X+
n

(
X̃n ∧M

)p−1
∣∣∣∣

≤ p

p− 1
E
[(
X+

n

)p] 1
p E

[∣∣∣X̃n ∧M
∣∣∣p] p−1

p

.

Dividing through by E
[∣∣∣X̃n ∧M

∣∣∣p] p−1
p

> 0 shows that

E
[(
X̃n ∧M

)p] 1
p

≤ p

p− 1
E
[(
X+

n

)p] 1
p ,
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and thus

E
[(
X̃n ∧M

)p]
≤
(

p

p− 1

)p

E
[(
X+

n

)p]
.

Sending M → ∞ and invoking monotone convergence completes the proof. □

Since |Yn| is a submartingale whenever Yn is a martingale, we have

Corollary 4.2. If Yn is a martingale and Y ∗
n = max

1≤m≤n
|Yn|, then

E
[
(Y ∗

n )
p ] ≤ ( p

p− 1

)p

E
[
|Yn|p

]
.

With the maximum inequality behind us, it is a small step to show

Theorem 4.5 (Lp Convergence). If 1 < p < ∞ and Xn is a martingale with supnE
[
|Xn|p

]
< ∞, then

Xn → X a.s. and in Lp.

Proof. E
[
X+

n

]p ≤ E
[
|Xn|

]p ≤ E
[
|Xn|p

]
< ∞, so the martingale convergence theorem implies Xn → X

a.s.

Also,

E

[(
max

1≤m≤n
|Xn|

)p]
≤
(

p

p− 1

)p

E
[
|Xn|p

]
by Corollary 4.2, so letting n→ ∞ and using monotone convergence shows that supn |Xn| ∈ Lp.

Because |Xn −X|p ≤ (2 supn |Xn|)p, dominated convergence gives E
[
|Xn −X|p

]
→ 0. □

Uniform Integrability.

It remains to consider the p = 1 case. Essentially, this is just the Vitali convergence theorem, but we will go

ahead and do everything carefully.

De�nition. A collection of random variables {Xi}i∈I is said to be uniformly integrable if

lim
M→∞

(
sup
i∈I

E
[
|Xi| 1 {|Xi| > M}

])
= 0.

Uniform integrability implies uniform L1 bounds since we can take M large enough that the supremum in

the de�nition is less than 1, say, and thus conclude that

sup
i∈I

E [|Xi|] = sup
i∈I

(
E
[
|Xi| 1 {|Xi| ≤M}

]
+ E

[
|Xi| 1 {|Xi| > M}

])
≤ sup

i∈I
E
[
|Xi| 1 {|Xi| ≤M}

]
+ sup

i∈I
E
[
|Xi| 1 {|Xi| > M}

]
≤M + 1 <∞.
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However, one should observe that uniform integrability is a less restrictive assumption than domination by

an integrable function since if X ≥ 0 is integrable and |Xi| ≤ X for all i ∈ I, then

|Xi| 1 {|Xi| > M} ≤ |X| 1 {|X| > M} for all i ∈ I, so monotonicity and dominated convergence give

lim
M→∞

(
sup
i∈I

E
[
|Xi| 1 {|Xi| > M}

])
≤ lim

M→∞
E
[
|X| 1 {|X| > M}

]
= 0.

As an example of a u.i. family which is not dominated by an integrable random variable, consider Lebesgue

measure on (0, 1) and Xn(ω) = ω−11( 1
n+1 ,

1
n )
(ω).

Any �nite collection of integrable random variables is clearly uniformly integrable, but countable collections

need not be.

For example, if Xn = n1(0, 1
n ) on [0, 1] with Lebesgue measure, then E

[
|Xn| 1 {|Xn| > M}

]
= 1 for all

n > M . (This also shows that uniform integrability is a stronger assumption than uniform L1 bounds.)

Our next theorem shows that one can have very large u.i. families.

Theorem 4.6. Given a probability space (Ω,F , P ) and a random variable X ∈ L1, the collection

{E[X |G ] : G is a sub-σ-algebra of F} is uniformly integrable.

Proof. We �rst note that since X ∈ L1, if An is a sequence of events with P (An) → 0, then E
[
|X| 1An

]
→ 0

by the DCT for convergence in probability.

It follows that for every ε > 0, there is a δ > 0 such that P (A) < δ implies E
[
|X| 1A

]
< ε - if not, there

exists an ε > 0 and a sequence A1, A2, ... with P (An) <
1
n and E

[
|X| 1An

]
≥ ε, a contradiction.

Now let ε > 0 be given and choose δ as above. Taking M > E|X|
δ , it follows from Jensen's inequality that

for any G ⊆ F ,

E
[
|E [X |G ]| 1 {|E [X |G ]| > M}

]
≤ E

[
E
[
|X|

∣∣G] 1{∣∣E [X∣∣G]∣∣ > M
} ]

≤ E
[
E
[
|X|

∣∣G] 1{E [|X|
∣∣G] > M

} ]
= E

[
|X| 1

{
E
[
|X|

∣∣G] > M
} ]

where the �nal equality follows from the de�nition of conditional expectation by observing that{
E
[
|X|

∣∣G] > M
}
∈ G.

Using Chebychev's inequality, we have P
(
E
[
|X|

∣∣G] > M
)
≤

E
[
E
[
|X|
∣∣G]]

M = E|X|
M < δ.

Thus,

E
[ ∣∣E [X∣∣G]∣∣ 1{∣∣E [X∣∣G]∣∣ > M

} ]
≤ E

[
|X| 1

{
E
[
|X|

∣∣G] > M
} ]

< ε

for every G ⊆ F , and the result follows since ε was arbitrary. □

Uniform integrability is the condition needed to upgrade convergence in probability to convergence in L1.

Theorem 4.7. If Xn →p X, then the following are equivalent:

(i): {Xn}∞n=0 is uniformly integrable.

(ii): Xn → X in L1.

(iii): E |Xn| → E |X| <∞.
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Proof. Assume {Xn} is u.i. and let φM (x) =


M, x > M

x, |x| ≤M

−M, x < −M
.

Then

|Xn −X| ≤ |Xn − φM (Xn)|+ |φM (Xn)− φM (X)|+ |φM (X)−X|

= (|Xn| −M)
+
+ |φM (Xn)− φM (X)|+ (|X| −M)

+

≤ |Xn| 1 {|Xn| > M}+ |φM (Xn)− φM (X)|+ |X| 1 {|X| > M} ,

and thus

E |Xn −X| ≤ E [|Xn| 1 {|Xn| > M}] + E |φM (Xn)− φM (X)|+ E [|X| 1 {|X| > M}] .

Since Xn →p X and φM is bounded and continuous, E |φM (Xn)− φM (X)| → 0. (Convergence in prob-

ability is preserved by continuous functions and the convergence in probability generalization of bounded

convergence then applies.)

Uniform integrability ensures that the �rst term can be made less than any given ε > 0 by choosing M

su�ciently large.

It also ensures that supnE |Xn| < ∞, so the convergence in probability version of Fatou's lemma implies

that E |X| <∞, and thus M can be taken large enough that the third term is less than ε as well.

Therefore, given ε > 0, we can choose M so that

E |Xn −X| < ε+ E |φM (Xn)− φM (X)|+ ε→ 2ε as n→ ∞,

hence (i) implies (ii).

That (ii) implies (iii) is standard:∣∣E |Xn| − E |X|
∣∣ ≤ E

∣∣ |Xn| − |X|
∣∣ ≤ E |Xn −X| → 0.

Finally, suppose that E |Xn| → E |X| <∞ and de�ne ψM (x) =


x, 0 ≤ x ≤M − 1

(M − 1)(M − x), M − 1 < x < M

0, otherwise

.

Given ε > 0, one can choose M large enough that E |X| − E [ψM (|X|)] < ε by the DCT.

Also, as in the �rst part of the proof, Xn →p X and ψM (|·|) ∈ Cb implies E[ψM (|Xn|)] → E[ψM (|X|)].

Thus there is an N ∈ N such that for all n ≥ N ,
∣∣E |Xn| − E |X|

∣∣, |E[ψM (|Xn|)]− E[ψM (|X|)]| < ε, hence

E [|Xn| 1 {|Xn| > M}] ≤ E |Xn| − E [ψ (|Xn|)]

≤
∣∣E |Xn| − E |X|

∣∣+ (E |X| − E [ψ (|X|)]) + |E [ψ (|X|)]− E [ψ (|Xn|)]| < 3ε.

By increasing M if need be, we can ensure that E [|Xn| 1 {|Xn| > M}] < 3ε for the (�nitely many) n < N ,

and uniform integrability is established. □
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We are �nally able to provide necessary and su�cient conditions for L1 convergence.

Theorem 4.8. For a submartingale, the following are equivalent.

(i): It is uniformly integrable.

(ii): It converges a.s. and in L1.

(iii): It converges in L1.

Proof. Uniform integrability implies that supnE |Xn| < ∞ so the martingale convergence theorem implies

Xn → X a.s., and Theorem 4.7 implies Xn → X in L1, hence (i) implies (ii).

As (ii) tautologically implies (iii), it remains only to show that L1 convergence implies uniform integrability.

But this is also a simple consequence of Theorem 4.7 since Xn → X in L1 implies Xn →p X. □

When Xn is a martingale, we can actually say a little bit more.

Theorem 4.9. For a martingale, the following are equivalent.

(i): It is uniformly integrable.

(ii): It converges a.s. and in L1.

(iii): It converges in L1.

(iv): There is an X ∈ L1 with Xn = E[X |Fn ].

Proof. Since martingales are submartingales, (i) ⇒ (ii) ⇒ (iii) by Theorem 4.8.

Now assume that Xn → X in L1. Then for all A ∈ F ,

|E[Xn1A]− E[X1A]| = |E [(Xn −X) 1A]| ≤ E |(Xn −X) 1A| ≤ E |Xn −X| → 0,

hence E[Xn1A] → E[X1A].

Also, since Xn is a martingale, we have E[Xn |Fm ] = Xm for all m < n. Thus if A ∈ Fm, then

E[Xm1A] = E
[
E[Xn |Fm ]1A

]
= E

[
E[Xn1A |Fm ]

]
= E[Xn1A].

Putting these facts together shows that E[Xm1A] = E[X1A] for all A ∈ Fm, which, by de�nition of condi-

tional expectation, implies that Xm = E[X |Fm ].

Since Theorem 4.6 shows that (iv) ⇒ (i), the chain is complete. □

The nontrivial part of Theorem 4.9 (conditional on preceding results) was the conclusion that if a martingale

Xn converges to a random variable X in L1, then Xn = E[X |Fn ]. Our next result can be seen as a variation

on this theme.

Theorem 4.10 (Lévy's Forward Theorem). Suppose that Fn ↗ F∞ � i.e. {Fn} is a �ltration and F∞ =

σ (
⋃

n Fn). Then for any integrable X,

E[X |Fn ] → E[X |F∞ ] a.s. and in L1.
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Proof. We showed in Example 2.4 that Xn = E[X |Fn ] is a martingale and Theorem 4.6 implies it is

uniformly integrable.

It follows, therefore, from Theorem 4.9 that E[X |Fn ] converges to a limit X∞ a.s. and in L1, and that

E[X |Fn ] = Xn = E[X∞ |Fn ].
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By de�nition of conditional expectation, this means that for all A ∈ Fn,∫
A

XdP =

∫
A

XndP =

∫
A

X∞dP.

Our claim that X∞ = E[X |F∞ ] will follow if we can show that the above holds for all A ∈ F∞.

But this is a consequence of the π − λ theorem since P =
⋃

n Fn is a π-system which generates F∞ and is

contained in the λ-system L =
{
A :

∫
A
XdP =

∫
A
X∞dP

}
.

(P is a π-system since {Fn} is a �ltration and L is a λ-system since X,X∞ are integrable.) □

An immediate consequence of Theorem 4.10 is

Theorem 4.11 (Lévy's 0− 1 Law). If Fn ↗ F∞ and A ∈ F∞, then P (A |Fn ) → 1A a.s.

Though Theorem 4.11 may seem trivial, it should be noted that it implies Kolmogorov's 0− 1 law:

If X1, X2, ... are independent and A belongs to the tail �eld T =
⋂

n σ(Xn, Xn+1, ...), then 1A is independent

of each Fn = σ(X1, ..., Xn), so P (A |Fn ) = P (A). As T ⊆ σ(X1, X2, . . .) = F∞, Theorem 4.11 implies that

this converges to 1A a.s., so we must have P (A) = 1A a.s., hence P (A) ∈ {0, 1}.
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5. Optional Stopping

We round out our discussion of smartingales with a look at optional sampling theorems, of which we have

already seen one example:

If Xn is a submartingale and M,N are stopping times with M ≤ N ≤ k a.s., then

E[X0] ≤ E[XM ] ≤ E[XN ] ≤ E[Xk].

We now look into what kind of conditions on Xn allow us to reach similar conclusions for unbounded stopping

times.

Lemma 5.1. If Xn is a uniformly integrable submartingale and N is any stopping time, then XN∧n is

uniformly integrable.

Proof. X+
m is a submartingale and N ∧ n ≤ n is a stopping time, so E[X+

N∧n] ≤ E[X+
n ] by Corollary 4.1.

Since X+
m is u.i., we have

sup
n
E[X+

N∧n] ≤ sup
n
E[X+

n ] <∞,

so the martingale convergence theorem implies XN∧n → XN a.s. (where X∞ = lim
n→∞

Xn) and E |XN | <∞.

Because E |XN | <∞ and {Xn} is u.i., for any ε > 0, we can choose K so that

E
[
|XN | ; |XN | > K

]
, supnE

[
|Xn| ; |Xn| > K

]
<
ε

2
,

hence

E
[
|XN∧n| ; |XN∧n| > K

]
= E

[
|Xn| ; |Xn| > K, N > n

]
+ E

[
|XN | ; |XN | > K, N ≤ n

]
≤ supnE

[
|Xn| ; |Xn| > K

]
+ E

[
|XN | ; |XN | > K

]
< ε

for all n, showing that {XN∧n} is u.i. □

It is worth observing that the �nal sentence in the preceding proof establishes

Corollary 5.1. If E |XN | <∞ and Xn1 {N > n} is u.i., then XN∧n is u.i.

The utility of Lemma 5.1 is that it enables us to prove

Theorem 5.1. If Xn is a uniformly integrable submartingale, then for any stopping time N ≤ ∞,

E[X0] ≤ E[XN ] ≤ E[X∞] where X∞ = lim
n→∞

Xn.

Proof. Corollary 4.1 gives E[X0] ≤ E[XN∧n] ≤ E[Xn] for all n. Since Xn and XN∧n are u.i., the L1

martingale convergence theorem implies E[XN∧n] → E[XN ] and E[Xn] → E[X∞], so the result follows by

taking n→ ∞ in the above inequality. □

Observe that if Xn is our �double after losing� martingale and N = inf {n : Xn = 1}, then XN = 1 ̸= 0 = X0.

Thus the conclusion of Theorem 5.1 need not hold if Xn is not u.i.

More generally, Theorem 5.1 shows that any such system will fail if we only have �nite credit, because then

the corresponding martingale would be bounded and thus uniformly integrable.
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A useful consequence of Theorem 5.1 is

Theorem 5.2. If L ≤M are stopping times and YM∧n is a u.i. submartingale, then

E[Y0] ≤ E[YL] ≤ E[YM ] and YL ≤ E[YM |FL ].

Proof. The �rst claim follows from Theorem 5.1 by setting Xn = YM∧n, N = L, so that

E[Y0] = E[X0], E[YL] = E[YM∧L] = E[XN ], E[YM ] = lim
n→∞

E[YM∧n] = E[X∞].

Now for A ∈ FL, let N =

{
L on A

M on AC
. This is a stopping time since L ≤ M implies A ∈ FL ⊆ FM ,

hence {N = n} = (A ∩ {L = n}) ∪
(
AC ∩ {M = n}

)
∈ Fn.

As N ≤M by construction, the preceding shows that

E[YL;A] + E[YM ;AC ] = E[YN ] ≤ E[YM ] = E[YM ;A] + E[YM ;AC ],

hence

E[YL;A] ≤ E[YM ;A] = E
[
E[YM1A |FL ]

]
= E

[
E[YM |FL ];A

]
.

Taking A = Aε := {YL − E[YM |FL ] ≥ ε} shows that P (Aε) = 0 for all ε > 0 and the desired result

follows. □

We have shown that optional stopping holds for bounded stopping times and for bounded smartingales

(as bounded implies uniformly integrable), and noted that these results show that you need in�nite time

and credit, respectively, to ensure victory in an unfavorable game. Our last optional stopping theorem lies

somewhere in between these two and shows that another way for casinos to guard against length of play

strategies is to place caps on bets.

Theorem 5.3. Suppose Xn is a submartingale with E
[
|Xn+1 −Xn| |Fn

]
≤ B a.s. If N is a stopping time

with E[N ] <∞, then XN∧n is u.i. and thus E[XN ] ≥ E[X0].

Proof. Since

|XN∧n| =

∣∣∣∣∣X0 +

n−1∑
m=0

(Xm+1 −Xm) 1 {N > m}

∣∣∣∣∣ ≤ |X0|+
∞∑

m=0

|Xm+1 −Xm| 1 {N > m} ,

it will follow that XN∧n is u.i. once we show that the right-hand side is integrable.

To see this, observe that {N > m} = {N ≤ m}C ∈ Fm, so it follows from our assumptions that

E
[
|Xm+1 −Xm| 1 {N > m}

]
= E

[
E[|Xm+1 −Xm| |Fm ]1 {N > m}

]
≤ E [B1 {N > m}] = BP (N > m) ,

and thus

E
[
|X0|+

∞∑
m=0

|Xm+1 −Xm| 1 {N > m}
]
≤ E |X0|+

∞∑
m=0

BP (N > m) = E |X0|+BE [N ] <∞.

□
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Our �nal optional stopping theorem applies to arbitrary stopping times and requires that the smartingale

be a.s. bounded in the appropriate direction.

Theorem 5.4. If Xn is a nonnegative supermartingale and N is a stopping time, then E [X0] ≥ E [XN ].

Proof. Corollary 2.6 shows that X∞ = lim
n→∞

Xn exists, so XN is well-de�ned.

Also, E [X0] ≥ E [XN∧n] for all n ∈ N by Theorem 2.7.

Since monotone convergence implies

E [XN ;N <∞] = lim
n→∞

E [XN ;N ≤ n]

and Fatou's lemma implies

E [XN ;N = ∞] ≤ lim inf
n→∞

E [Xn;N > n] ,

we have

E [X0] ≥ lim inf
n→∞

E [XN∧n] = lim inf
n→∞

(E [Xn;N > n] + E [XN ;N ≤ n]) ≥ E [XN ] . □

Example 5.1 (Gambler's Ruin). Suppose that in successive �ips of an unfair coin, we win one dollar

if the coin comes up heads and lose one dollar if it comes up tails. If we start with nothing, then our

fortune at time n behaves like asymmetric simple random walk, Sn =
∑n

i=1 ξi where ξ1, ξ2, ... are i.i.d. with

P (ξi = 1) = 1− P (ξi = −1) = p.

Clearly Sn is a submartingale w.r.t. Fn = σ(ξ1, ..., ξn) if p >
1
2 and a supermartingale if p < 1

2 .

Since we don't want to have to consider the cases separately, we look at Xn =
(

1−p
p

)Sn

, which we claim is

a martingale: Xn is bounded and Fn-measurable, and

E [Xn+1 |Fn ] = E

[(
1− p

p

)Sn
(
1− p

p

)ξn+1

∣∣∣∣∣Fn

]

=

(
1− p

p

)Sn

E

[(
1− p

p

)ξn+1
]

= Xn

[
p

(
1− p

p

)
+ (1− p)

(
p

1− p

)]
= Xn.

Now let's suppose we decide beforehand that we will quit once we lose a dollars or win b dollars, whichever

happens �rst. That is, we walk away at time N = T−a ∧ Tb where Tx = inf{m : Sm = x}.

A natural question is how likely is it the game ends in ruin, r = P (T−a < Tb).

We �rst note that SN∧n is uniformly bounded and thus is uniformly integrable. It follows from the L1

martingale convergence theorem that SN∧n has a limit almost surely and in L1. As convergence to a point

in (−a, b) is impossible, it must be the case that N <∞ a.s.

That SN∧n is bounded also implies XN∧n =
(

1−p
p

)SN∧n

is u.i., so we can apply the martingale form of

Theorem 5.1 to conclude that

1 = E[X0] = E[XN ] =

(
1− p

p

)−a

r +

(
1− p

p

)b

(1− r)

= r

[(
1− p

p

)−a

−
(
1− p

p

)b
]
+

(
1− p

p

)b

.
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The probability of ruin is thus

r =
1−

(
1−p
p

)b
(

p
1−p

)a
−
(

1−p
p

)b .

Example 5.2 (Patterns in Coin Tossing). We are interested in the expected waiting time for the �rst

occurrence of HTH in a sequence of independent tosses of a fair coin. More formally, suppose that X1, X2, ...

are i.i.d. with P (Xi = H) = P (Xi = T ) = 1
2 , and set τHTH = inf {t ≥ 3 : Xt−2 = H,Xt−1 = T,Xt = H}.

We want to compute E[τHTH ].

Somewhat surprisingly, our analysis is simpli�ed by incorporating a casino and an army of gamblers into the

model. The setup is as follows. The casino o�ers even odds on successive tosses of a fair coin (X1, X2, ...).

Gamblers arrive one at a time with the kth gambler joining the game just before Xk is observed and placing

a $1 bet on heads. If Xk = T , he loses his dollar and quits playing. If Xk = H, the casino pays him $2,

which he then wagers on Xk+1 = T . If he loses, then he walks away with nothing and is out his initial $1

stake. Otherwise, he bets his $4 fortune on Xk+2 = H. Regardless of the outcome, he quits after this round.

Since the game is fair, the casino's net pro�t from the kth round, ξk ∈ σ(X1, ..., Xk), has E[ξk] = 0. It

follows that the casino's pro�t from the �rst n rounds, Mn =
∑n

k=1 ξk, is a martingale w.r.t. σ(X1, ..., Xn).

Also, MτHTH
= τHTH − 10 because each of the τHTH gamblers payed a $1 entrance fee, and all gamblers

except the (τHTH − 2)nd (who has $8) and the τHTHth (who has $2) walked away with nothing.

If we can show that optional stopping applies, then it will follow that 0 = E[M0] = E[MτHTH
] = E[τHTH ]−10.

To see that this is so, we �rst note that τHTH is stochastically dominated by 3Y where Y ∼ Geom( 18 ), thus

E[τHTH ] <∞, hence E |MτHTH
| ≤ E[τHTH ] + 10 <∞.

Also, since |Mn| ≤ 7n (as none of the n gamblers have a net loss or gain exceeding 7), we see that∫
|Mn1 {τHTH > n}| dP ≤ 7n

∫
1 {τHTH > n} dP = 7nP (τHTH > n)

≤ 7nP
(
Y >

n

3

)
= 7n

(
7

8

)⌊n
3 ⌋

→ 0 as n→ ∞.

It follows that Mn1 {τHTH > n} is u.i., so Corollary 5.1 shows that MτHTH∧n is u.i., hence Theorem 5.2

implies E[MτHTH
] = E[M0] and we conclude that E[τHTH ] = 10.

The exact same logic applies for words of di�erent lengths and alphabets of various sizes.

It is interesting to note that if you carry out this analysis for the sequence HHH, then you �nd that

E[τHHH ] = 8+4+2 = 14, so coin toss patterns of the same length can have di�erent expected times to �rst

occurrence.
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6. Markov Chains

In words, a Markov chain is a random process in which the future depends on the past only through the

present. More formally,

De�nition. Let (S,S) be a measurable space. A sequence of S-valued random variables X0, X1, X2, ... on

a �ltered probability space (Ω,F , {Fn}, P ) is said to be a Markov chain with respect to Fn if Xn ∈ Fn and

for all B ∈ S,
P (Xn+1 ∈ B |Fn ) = P (Xn+1 ∈ B |Xn ).

S is called the state space of the chain, and the law of X0 is called the initial distribution.

* We take it as implicit in the name �Markov chain� (as opposed to �Markov process�) that we are working

in discrete time.

As the above de�nition is fairly di�cult to work with directly, we introduce the following useful construct.

De�nition. A function p : S × S → R is called a transition probability if

(1) For each x ∈ S, A 7→ p(x,A) is a probability measure on (S,S),
(2) For each A ∈ S, x 7→ p(x,A) is a measurable function.

We say that Xn is a Markov chain (w.r.t. Fn) with transition probabilities pn if

P (Xn+1 ∈ B |Fn ) = pn(Xn, B).

If (S,S) is nice or S is countable, there is no loss of generality in supposing the existence of transition

probabilities as we are then assured of the existence of a r.c.d. for Xn+1 given σ(Xn):

µn(ω,B) = P (Xn+1 ∈ B |Xn ) = P (Xn+1 ∈ B |Fn ).

The last problem on the �rst homework shows that we can take µn(ω,B) = pn(Xn(ω), B) for some transition

probability pn.

Conversely, if we are given an initial distribution µ on (S,S) and a sequence of transition probabilities

p0, p1, ..., we can de�ne a consistent sequence of �nite dimensional distributions by

νn(X0 ∈ B0, X1 ∈ B1, ..., Xn ∈ Bn) =

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn).

If (S,S) is nice, Kolmogorov's extension theorem guarantees the existence of a measure Pµ on the sequence

space (SN0 ,SN0) such that the coordinate maps Xn(ω) = ωn have the desired distributions.

* Note that the extension theorem also applies when S is countable since we can then identify S with a

subset of Z ⊆ R.

Through a slight abuse of notation, when µ = δx is the point mass at x, we will write Px for Pδx .

It is worth observing that the family of measures {Px}x∈S is fundamental in the sense that

Pµ(A) =
∫
Px(A)µ(dx) for any initial distribution µ on (S,S).
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To see that the construction from Kolmogorov's theorem de�nes a Markov chain with respect to

Fn = σ(X0, X1, ..., Xn) having transition probabilities {pn}, we need to prove that∫
A

1B(Xn+1) dPµ =

∫
A

pn(Xn, B) dPµ

for all n ∈ N0, A ∈ Fn, B ∈ S.

Since the collection of (n + 1)-cylinders is a π-system which generates Fn, a π − λ argument shows that it

su�ces to consider A = {X0 ∈ B0, X1 ∈ B1, ..., Xn ∈ Bn} with Bi ∈ S.

We compute∫
A

1B(Xn+1) dPµ = Pµ(A,Xn+1 ∈ B) = Pµ(X0 ∈ B0, X1 ∈ B1, ..., Xn ∈ Bn, Xn+1 ∈ B)

=

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)

∫
B

pn(xn, dxn+1)

=

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)pn(xn, B).

To �nish up, we reconstruct the integral:

If f(xn) = 1C(xn), then∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)1C(xn) = Pµ(X0 ∈ B0, ..., Xn ∈ Bn ∩ C)

= Pµ(A,Xn ∈ C) =

∫
A

1C(Xn) dPµ.

Linearity shows the result holds for f(xn) simple, and the bounded convergence theorem extends it to

bounded measurable f , such as f(xn) = pn(xn, B).

In summary, we have shown that

Theorem 6.1. If (S,S) is nice (or S is countable), then for any distribution µ and any sequence of transition

probabilities p0, p1, ..., there exists an S-valued Markov chain {Xn} such that X0 ∼ µ and

P (Xn+1 ∈ B |X0, X1, ..., Xn ) = pn(Xn, B).

In order to verify that the preceding Kolmogorov construction is indeed the right one, we prove

Theorem 6.2. Any Markov chain Xn on (S,S) having initial distribution µ and transition probabilities pn

has �nite dimensional distributions satisfying

P (X0 ∈ B0, X1 ∈ B1, ..., Xn ∈ Bn) =

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)

for all n ∈ N0, B0, ..., Bn ∈ S.

To this end, we �rst record the following useful consequence of the π − λ theorem.

Theorem 6.3 (Functional Monotone Class Theorem). Let A be a π-system containing Ω and let H be a

collection of functions f : Ω → R which satis�es

(i) If A ∈ A, then 1A ∈ H.

(ii) If f, g ∈ H and c ∈ R, then f + g and cf are in H.

(iii) If f1, f2, ... ∈ H are nonnegative with fn ↗ f , then f ∈ H.

Then H contains all functions which are measurable with respect to σ(A).
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Proof. L = {A : 1A ∈ H} is a λ-system since (i) implies 1Ω ∈ H; (ii) implies 1B\C = 1B − 1C ∈ H if

B,C ∈ L with C ⊆ B; and (iii) implies 1A = limn 1An ∈ H if An ∈ L with An ↗ A.

As (i) shows that the π-system A is contained in L, it follows from the π − λ theorem that σ(A) ⊆ L, thus
H contains all indicators of events in σ(A).

It then follows from (ii) that H contains all simple functions and from (iii) that it contains all nonnegative

measurable functions. Taking positive and negative parts and using (ii) gives the result. □

(Often, condition (iii) only supposes that f ∈ H when fn ↗ f with f bounded, and the conclusion is that H
contains all bounded σ(A)-measurable functions. The argument is the same, and that version can be more

convenient when H is de�ned in terms of expectations.)

Proof of Theorem 6.2. The proof of Theorem 6.1 shows that

H =
{
f : S → R such that f is bounded and E[f(Xn+1) |Fn ] =

∫
pn(Xn, dy)f(y) for all n ∈ N0

}
satis�es the conditions of Theorem 6.3 with A = S, hence E[f(Xn+1) |Fn ] =

∫
pn(Xn, dy)f(y) for all

bounded f ∈ S.

Accordingly, for any bounded measurable f0, ..., fn,

E

[
n∏

m=0

fm(Xm)

]
= E

[
E

[
n∏

m=0

fm(Xm)

∣∣∣∣∣Fn−1

]]

= E

[
n−1∏
m=0

fm(Xm) · E [fn(Xn) |Fn−1 ]

]

= E

[
n−1∏
m=0

fm(Xm) ·
∫
pn−1(Xn−1, dy)fn(y)

]
.

Since
∫
pn−1(Xn−1, dy)fn(y) is a bounded measurable function of Xn−1, it follows by induction that if

µ = L (X0), then

E

[
n∏

m=0

fm(Xm)

]
=

∫
µ(dx0)f0(x0)

∫
p0(x0, dx1)f1(x1) · · ·

∫
pn−1(xn−1, dxn)fn(xn),

establishing Theorem 6.2. □

The preceding results show that we can describe a Markov chain Xn by specifying the transition probabilities

pn. In practice, the transition probabilities are the fundamental objects for analyzing Markov chains.

Given transition probabilities, we can assume that the Xn's are the coordinate maps on the sequence space(
SN0 ,SN0

)
.

This construction gives us a measure Pµ for each initial distribution µ, which makes Xn a Markov chain

with transition probabilities pn.

It also enables us to work with the shift operators (θnω)i = ωi+n.

To keep things simple, we will restrict our attention henceforth to temporally homogeneous Markov chains,

in which there is a single transition probability p = p0 = p1 = ...
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Example 6.1 (Random Walk). Let ξ1, ξ2, ... ∈ Rd be i.i.d. random vectors with distribution µ, and de�ne

Xn = x0+ξ1+...+ξn. ThenXn de�nes a Markov chain with initial distribution δx0 and transition probability

p(x,B) = µ(B − x).

If the ξk's are independent but not identically distributed, we still get a Markov chain, but it's no longer

time homogeneous.

All other examples of Markov chains that we will consider will have countable state space S = {s1, s2, ...}
equipped with the σ-algebra S = 2S .

In this case, the transition probabilities are speci�ed by functions of the form p : S × S → [0, 1] with∑
t∈S p(s, t) = 1 for all s ∈ S. (The corresponding transition probability p̃ : S × S → R is given by

p̃(x,B) =
∑

y∈B p(x, y).) The interpretation is p(s, t) = P (Xn+1 = t |Xn = s ).

Example 6.2 (Branching Processes). Let ξ1, ξ2, ... ∈ N0 be i.i.d. The Galton-Watson process can be viewed

as a Markov chain on N0 with transition function p(i, j) = P
(∑i

k=1 ξk = j
)
. (If the current population size

is i, and individual k has ξk o�spring, the next generation will have population size
∑i

k=1 ξk.)

Example 6.3 (Birth and Death Chains). Birth and death chains are de�ned by the condition Xn ∈ N0

with |Xn −Xn+1| ≤ 1. In terms of transition probabilities, this means that p0 + r0 = 1 and pk + rk + qk = 1

for k ≥ 1 where pn = p(n, n + 1), rn = p(n, n), and qn = p(n, n − 1). One can think of the associated

chains as giving population sizes in successive generations in which at most one birth or death can occur per

generation.

Example 6.4 (M/G/1 Queue). The M/G/1 queue is a model of line lengths at a service station. M stands

for Markovian (or memoryless) and means that customers arrive according to a rate λ Poisson process; G

indicates that the service times follow a general distribution F ; and 1 is because there is a single server. We

assume that the line can be arbitrarily long and that the priority is ��rst come, �rst serve.�

The time steps correspond to new customers being served, so that Xn is the length of the queue when

customer n begins their service. X0 = x is the number of people in line when service opens with customer 0.

Let ak =
∫∞
0
e−λt (λt)

k

k! dF (t) be the probability that k customers arrive during a service time, and let ξn

denote the net number of customers to enter the queue during the service of customer n, keeping in mind

that customer n completed their service in this time period. Our assumptions imply that that ξ0, ξ1, ... are

i.i.d with P (ξn = k − 1) = ak, and we have Xn+1 = (Xn + ξn)
+
. We take positive parts because if there

is no one waiting when the nth customer begins their service (Xn = 0) and no customers arrive during this

service time (ξn = −1), then the next queue length is 0 since we don't start counting until the next customer

arrives and begins service.

It is not di�cult to see that Xn de�nes a Markov chain with transition probabilities

p(0, 0) = a0 + a1,

p(j, j + k − 1) = ak if j ≥ 1 or k > 1.
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Example 6.5 (Random Walks on Graphs). Let G = (V,E) be a simple undirected graph with vertex set

V and edge set E. For u, v ∈ V , write u ∼ v if {u, v} ∈ E. Assume that supv∈V deg(v) < ∞ where

deg(v) =
∑

u∈V 1 {u ∼ v} is the degree of v. A simple random walk on G proceeds by moving from the

present vertex to a neighbor chosen uniformly at random - that is, p(u, v) =
1

deg(u)
1 {v ∼ u}.

More generally, suppose that G = (V,
−→
E ) is a directed graph (possibly containing self-loops) and let

w :
−→
E → [0,∞). One can de�ne a random walk on V by p(u, v) =

w({u, v})∑
x:{u,x}∈

−→
E
w({u, x})

.

In fact, every Markov chain on a countable state space S can be interpreted as a random walk on the directed

graph having vertices indexed by S, edge set {{u, v} : p(u, v) > 0}, and edge weights w ({u, v}) = p(u, v).

Example 6.6 (Random Walks on Groups/Card Shu�ing). Any probability µ on a countable group G

induces a random walk via p(g, h) = µ(hg−1). The Markov chain is de�ned by Xn+1 = gn+1Xn where

g1, g2, . . . are chosen independently from µ.

For example, let G = (Z/2Z)d, and let µ(x) = 1
d if x has exactly one coordinate equal to one, µ(x) = 0

otherwise. The associated Markov chain, Xn, is equivalent to simple random walk on the hypercube.

If we de�ne ∥x∥ = |{i ∈ [d] : xi = 1}|, then one can verify that Yn = ∥Xn∥ is a Markov chain. In fact, Yn is

equivalent to the Ehrenfest chain mentioned in Durrett (Example 6.2.5).

As another example, let G = Sn, and let µ(τ) =
(
n
2

)−1
1 {τ = (ij)} be the uniform distribution on transpo-

sitions. We can think of permutations as representing arrangements of a deck of cards: σ ∈ Sn corresponds

to the ordering in which σ(k) is the label of the kth card from the top. (Equivalently, the card labeled l is

in position σ−1(l).)

Left-multiplying σ by τ = (ij) corresponds to interchanging card i and card j in the deck:

τ ◦ σ(k) =


σ(k), σ(k) /∈ {i, j}
i, σ(k) = j

j, σ(k) = i

.

Thus we can think of the random walk in terms of repeatedly shu�ing the deck by randomly transposing

pairs of cards.

In card shu�ing applications, it is often more convenient to multiply on the right � so Xn+1 = Xnσ,

p(σ, π) = µ(σ−1π) � as we typically want shu�es to act on positions rather than labels.

For the random transposition case, right-multiplying σ by τ = (ij) corresponds to interchanging the card in

position i with the card in position j:

σ ◦ τ(k) =


σ(k), k /∈ {i, j}
σ(j), k = i

σ(i), k = j

.

In this example, the two conventions are essentially equivalent, but typically there is a distinction.

Consider shu�ing by removing the top card and inserting it in a random position. Here we need to multiply

on the right by permutations distributed according to µ(σ) = 1
n1{σ = (1 · · · k) for some k ∈ [n]}.

Left multiplication by (1 · · · k) would correspond to replacing the card labeled k with the card labeled 1 and

the card labeled j with that labeled j + 1 for j < k. This requires looking at the cards.
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The inverse of this �top-to-random shu�e� � namely, placing a randomly chosen card on the top of the deck

� corresponds to right-multiplication by a cycle of the form (k · · · 1) = (1 · · · k)−1 with k chosen uniformly

from [n].

Note that the left-invariant walk (having kernel p(x, y) = µ(x−1y)) transforms into the right-invariant walk

driven by µ̌(g) = µ(g−1) under the anti-automorphism x 7→ x−1, so it su�ces to stick with one convention

for developing theory and then translate the results when a particular model is better suited to the other

choice.

When S = {s1, ..., sn} is �nite (as in some of the latter examples), the transition probabilities can be encoded

in a transition matrix K ∈Mn(R) de�ned by Ki,j = p(si, sj). One nice thing about �nite state space Markov

chains is that one can often prove powerful results by using ideas from linear algebra.

Some texts have di�erent conventions regarding the indexing of transition matrices. For us, the x, y-entry

represents the probability of moving from x to y in a single step. It follows that probability distributions

are represented by row vectors and functions by column vectors.

That is, if K is the transition matrix for Xn, µ is a probability measure on (S,S), and f : S → R, then

(µK) (y) =
∑
x∈S

µ(x)K(x, y) = P (Xn+1 = y |Xn ∼ µ )

and

(Kf) (x) =
∑
y∈S

K(x, y)f(y) = E [f(Xn+1) |Xn = x ] .

For countably in�nite state spaces, the �transition matrix� is in�nite, so not all linear algebraic results carry

over directly. However, the operator perspective is still convenient.

For example, Theorem 6.2 implies that

Pµ (X0 = x0, X1 = x1, ..., Xn = xn) = µ(x0)

n∏
m=1

p(xm−1, xm).

When n = 1, we have

Pµ (X1 = y) =
∑
x

Pµ (X0 = x,X1 = y) =
∑
x

µ(x)p(x, y) = (µp)(y).

When n = 2, µ = δx,

Px (X2 = z) =
∑
y

Px (X1 = y,X2 = z) =
∑
y

p(x, y)p(y, z) = p2(x, z).

It follows by induction that

Px (Xn = z) =
∑
y

Px (Xn−1 = y,Xn = z) =
∑
y

pn−1(x, y)p(y, z) = pn(x, z),

and thus

Pµ (Xn = z) =
∑
x

µ(x)Px (Xn = z) =
∑
x

µ(x)pn(x, z) = (µpn)(z).
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7. Extensions of the Markov Property

The Markov property reads E [1B (Xn+1) |Fn ] = E [1B (Xn+1) |Xn ] for all B ∈ S. By the usual argument

of approximating by simple functions, we see that this is equivalent to E [h (Xn+1) |Fn ] = E [h (Xn+1) |Xn ]

for all bounded measurable h.

In this section, we show that for discrete time Markov chains, the Markov property extends to the whole

future and to random times.

Speci�cally, we have that for all bounded measurable h and all n ∈ N0,

E [h (Xn, Xn+1, . . .) |Fn ] = E [h (Xn, Xn+1, . . .) |Xn ] .

Moreover, if N is a stopping time, then the above holds with N in place of n when we restrict to the event

{N <∞}.

We will assume throughout that the Xn are coordinate maps on the sequence space (Ω,F) = (SN0 ,SN0)

and that Fn = σ(X0, X1, ..., Xn). For each probability measure µ on (S,S), we write Pµ for the measure on

(Ω,F) that makes Xn a Markov chain with initial distribution µ and transition probability p.

Also, we recall that the maps θn : Ω → Ω act by shifting coordinates: (θnω)i = ωi+n.

We begin by showing that the Markov property is not limited to a single time step.

Theorem 7.1. If Y : Ω → R is bounded and measurable, then

Eµ [Y ◦ θn |Fn ] = EXn [Y ]

where the subscript on the left indicates that the conditional expectation is taken with respect to Pµ, and the

expression on the right is φ(x) = Ex[Y ] evaluated at x = Xn.

Proof. Let A = {ω : ω0 ∈ A0, ..., ωn ∈ An} for some A0, ..., An ∈ S and let g0, ..., gm : (S,S) → (R,B) be
bounded and measurable.

Applying the formula

Eµ

[ N∏
i=0

fi(Xi)
]
=

∫
µ(dx0)f0(x0)

∫
p(x0, dx1)f1(x1) · · ·

∫
p(xN−1, dxN )fN (xN )

with fk = 1Ak
for k < n, fn = 1An

g0, and fn+j = gj for 1 ≤ j ≤ m , we have

Eµ

[ m∏
k=0

gk(Xn+k);A
]
=

∫
A0

µ(dx0)

∫
A1

p(x0, dx1) · · ·
∫
An

p(xn−1, dxn)

· g0(xn)
∫
p(xn, dxn+1)g1(xn+1) · · ·

∫
p(xm+n−1, dxm+n)gm(xm+n)

= Eµ

[
EXn

[ m∏
k=0

gk(Xk)
]
;A
]
.

The collection of sets A for which this holds is a λ-system, and the collection of sets for which it has been

proved is a π-system that generates Fn, so the π − λ theorem shows that it is true for all A ∈ Fn.
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Thus if Y (ω) =
∏m

k=0 gk(ωk) for g0, ..., gm bounded and measurable, then∫
A

Y ◦ θn dPµ =

∫
A

m∏
k=0

gk(Xn+k) dPµ = Eµ

[ m∏
k=0

gk(Xn+k);A
]

= Eµ

[
EXn

[ m∏
k=0

gk(Xk)
]
;A
]
=

∫
A

EXn

[ m∏
k=0

gk(Xk)
]
dPµ =

∫
A

EXn [Y ] dPµ

for all A ∈ Fn, hence Eµ[Y ◦ θn |Fn ] = EXn [Y ] for all such Y .

To complete the proof, we observe that the collection A of events of the form {ω0 ∈ A0, . . . , ωk ∈ Ak} is a π-
system that generates SN0 . The set of functions H = {Y : Eµ[Y ◦ θn |Fn ] = EXn [Y ]} contains the indicators
of events in A (take gk = 1Ak

in the preceding), and is certainly closed under sums, scalar multiples, and

increasing limits, so Theorem 6.3 implies that H contains all bounded measurable Y . □

Thus, conditional on Fn, Xn, Xn+1, ... has the same distribution as a copy of the chain started at Xn.

Markov chains are forgetful; they start fresh at every step.

It should be noted that Theorem 7.1 depends on the assumption of time homogeneity.

In general, writing Y (ω) = h(ω0, ω1, . . .), so that Y ◦ θn = h (Xn, Xn+1, . . .), the proof of Theorem 7.1 gives

E [h (Xn, Xn+1, ...) |Fn ] = E [h (Xn, Xn+1, ...) |Xn ] .

Another interpretation of this statement of the Markov property is that the past and the future are condi-

tionally independent given the present:

Corollary 7.1. If A ∈ σ(X0, ..., Xn) and B ∈ σ(Xn, Xn+1, ...), then for any initial distribution µ,

Pµ (A ∩B |Xn ) = Pµ (A |Xn )Pµ (B |Xn ) .

Proof. By Theorem 7.1 and basic properties of conditional expectation,

Pµ (A ∩B |Xn ) = Eµ [1A1B |Xn ] = Eµ [Eµ [1A1B |Fn ] |Xn ]

= Eµ [1AEµ [1B |Fn ] |Xn ] = Eµ [1AEµ [1B |Xn ] |Xn ]

= Eµ [1A |Xn ]Eµ [1B |Xn ] = Pµ (A |Xn )Pµ (B |Xn ) . □

A useful application of the Markov property is the following intuitive decomposition result for expressing

multi-step transition probabilities in terms of convolution (matrix multiplication):

Proposition 7.1 (Chapman-Kolmogorov). If Xn is time homogeneous with discrete state space, then

Px (Xm+n = z) =
∑
y

Px (Xm = y)Py (Xn = z) .

Proof. Since 1{z} (Xm+n(ω)) =
(
1{z} ◦Xn ◦ θm

)
(ω), Theorem 7.1 shows that

Px (Xm+n = z) = Ex

[
1{z} (Xm+n)

]
= Ex

[
Ex

[(
1{z} ◦Xn

)
◦ θm |Fm

]]
= Ex

[
EXm

[
1{z} ◦Xn

]]
= Ex [PXm (Xn = z)] =

∑
y

Px (Xm = y)Py (Xn = z) . □
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Our second extension is known as the Strong Markov Property which generalizes the original de�nition by

replacing deterministic times with stopping times.

Recall that if N is a stopping time with respect to a �ltration Fn, then the stopped σ-algebra FN consists

of all events A ∈ F such that A ∩ {N = n} ∈ Fn for all n.

Also, remember that we de�ned random shifts by

θNω =

{
θnω, ω ∈ {N = n}
∆, ω ∈ {N = ∞}

where ∆ is an extra point we add to Ω for convenience. In what follows, we will restrict our attention to

{N <∞}, so this extra point need not concern us.

Theorem 7.2 (Strong Markov Property). Let N be a stopping time and suppose that Y : Ω → R is bounded

and measurable. Then

Eµ

[
Y ◦ θN |FN

]
= EXN

[Y ] on {N <∞}.

Proof. For any A ∈ FN ,

Eµ

[
Y ◦ θN ;A ∩ {N <∞}

]
=

∞∑
n=0

Eµ [Y ◦ θn;A ∩ {N = n}]

=

∞∑
n=0

Eµ [EXn [Y ];A ∩ {N = n}]

= Eµ [EXN
[Y ];A ∩ {N <∞}] ,

and the result follows by de�nition of conditional expectation. □

The above proof is representative of many results for discrete stopping times - one sums over possible values

of N and then applies existing results to the summands. This trick doesn't work in continuous time and the

corresponding theorems can be much less trivial.

While every discrete time Markov process has the strong Markov property, the two notions do not necessarily

coincide in continuous time. (For example, Bt1 {B0 ̸= 0} is Markov but not strong Markov.)
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8. Classifying States

We will restrict our attention henceforth to chains having a countable state space.

De�ne T 0
y = 0 and

T k
y = inf

{
n > T k−1

y : Xn = y
}

(where inf ∅ = ∞), so that T k
y is the time of the kth visit to y at positive times.

Set Ty = T 1
y and let ρxy = Px (Ty <∞) be the probability that the chain started at x visits y in �nitely

many steps.

Theorem 8.1. Px

(
T k
y <∞

)
= ρxyρ

k−1
yy .

Proof. The result follows from the de�nition of ρxy when k = 1, so can assume that k ≥ 2.

Now let Y (ω) = 1 {ωn = y for some n ∈ N} = 1 {Ty <∞}.

Setting N = T k−1
y , we have Y ◦ θN = 1

{
ωn = y for some n > T k−1

y

}
= 1

{
T k
y <∞

}
on {N <∞}.

Also,

Ex[Y ◦ θN |FN ] = EXN
[Y ] on {N <∞}

by the strong Markov property.

As XN = y on {N <∞}, the right-hand side is EXN
[Y ] = Ey[Y ] = Py (Ty <∞) = ρyy.

Thus, since 1 {N <∞} ∈ FN , we have

Px

(
T k
y <∞

)
= Ex

[
1
{
T k
y <∞

}]
= Ex

[
Y ◦ θN ;N <∞

]
= Ex

[
Ex[Y ◦ θN |FN ];N <∞

]
= Ex [ρyy;N <∞] = ρyyPx

(
T k−1
y <∞

)
,

and the result follows by induction. □

De�nition. We say that y ∈ S is a recurrent state if ρyy = 1 and a transient state if ρyy < 1.

If every x ∈ S is a recurrent state, we say that the chain is recurrent.

If y is recurrent, then Theorem 8.1 shows that Py

(
T k
y <∞

)
= ρkyy = 1 for all k ∈ N, hence

Py (Xn = y i.o.) = 1.

If y is transient and we let N(y) =
∑∞

k=1 1 {Xk = y} be the number of visits to y at positive times, then

Ex[N(y)] =

∞∑
k=1

Px (N(y) ≥ k) =

∞∑
k=1

Px

(
T k
y <∞

)
=

∞∑
k=1

ρxyρ
k−1
yy = ρxy

∞∑
k=0

ρkyy =
ρxy

1− ρyy
<∞.

Combining these observations gives

Theorem 8.2. y is recurrent if and only if Ey [N(y)] = ∞.

De�nition. We say that y is accessible from x if ρxy > 0. If x = y or x is accessible from y and y is

accessible from x, we say that x and y communicate.
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Our next theorem says that if x is recurrent, then so are all states accessible from x. (Recurrence is

contagious.)

Theorem 8.3. If x is recurrent and ρxy > 0, then y is recurrent and ρyx = 1.

Proof. We �rst prove that ρyx = 1 by showing that ρxy > 0 and ρyx < 1 implies ρxx < 1.

Let K = inf
{
k : pk(x, y) > 0

}
. (K < ∞ since ρxy > 0.) Then there is a sequence y1, ..., yK−1 such that

p(x, y1)p(y1, y2) · · · p(yK−1, y) > 0. Moreover, since K is minimal, yk ̸= x for k = 1, ...,K − 1.

If ρyx < 1, then we have

1− ρxx = Px (Tx = ∞) ≥ p(x, y1)p(y1, y2) · · · p(yK−1, y)(1− ρyx) > 0,

a contradiction.

To prove that y is recurrent, we note that ρyx > 0 implies that there is an L with pL(y, x) > 0. Because

pL+n+K(y, y) ≥ pL(y, x)pn(x, x)pK(x, y),

we see that

Ey [N(y)] =

∞∑
k=1

Ey [1 {Xk = y}] =
∞∑
k=1

Py (Xk = y) =

∞∑
k=1

pk(y, y) ≥
∞∑

k=L+K+1

pk(y, y)

=

∞∑
n=1

pL+n+K(y, y) ≥ pL(y, x)pK(x, y)

∞∑
n=1

pn(x, x) = pL(y, x)pK(x, y)Ex [N(x)] = ∞,

so y is recurrent by Theorem 8.2. □

Theorem 8.3 allows us to conclude that states accessible from x are recurrent provided that we already know

x is recurrent. It is useful at this point to introduce the following de�nitions.

De�nition. A set D ⊆ S is called a communicating class if all states in D communicate: x, y ∈ D implies

x = y or ρxy > 0. A communicating class in which every state is accessible from itself (ρxx > 0 for all x ∈ D)

is called irreducible. (In general, a set B ⊆ S is irreducible if ρxy > 0 for all x, y ∈ B.)

If S itself is irreducible, we say that the chain is irreducible.

Proposition 8.1. The communicating classes partition the state space.

Proof. �Communicates with� is re�exive and symmetric by de�nition, thus we need only establish transitivity.

This is trivial if x, y, z are not all distinct, so (because of symmetry) it su�ces to show that ρxy, ρyz > 0

implies ρxz > 0.

But this is a simple consequence of the strong Markov property since Px

(
Tz ◦ θTy <∞

∣∣FTy

)
= Py (Tz <∞)

on {Ty <∞}, thus

ρxz = Px (Tz <∞) ≥ Px

(
Tz ◦ θTy <∞;Ty <∞

)
= Ex

[
Px

(
Tz ◦ θTy <∞

∣∣FTy

)
;Ty <∞

]
= Ex [Py (Tz <∞) ;Ty <∞]

= Py (Tz <∞)Ex [Ty <∞] = ρyzρxy > 0.

(Or you could just use pK+L(x, z) ≥ pK(x, y)pL(y, z)...) □

53



Note that communicating classes consisting of a single element, x, are not necessarily irreducible as it may

be the case that ρxx = 0.

However, the proof of transitivity shows that every class containing more than one state is irreducible.

Also, any communicating class containing a recurrent state is irreducible as it either contains multiple

elements or consists of a single recurrent state.

More importantly, Theorem 8.3 shows that recurrence is a class property - either every element in a com-

municating class is recurrent or every element is transitive.

Thus if we have identi�ed a communicating class, we can check recurrence for all members simultaneously

by testing a single element.

In many cases, this is simpli�ed by the next result.

De�nition. A set C ⊆ S is said to be closed if it contains all points accessible from any of its elements:

x ∈ C and ρxy > 0 implies y ∈ C. The reason for the name is that if C is closed and x ∈ C, then

Px (Xn ∈ C) = 1 - there is no escaping C.

If a singleton {z} is closed, we say that the state z is absorbing.

Theorem 8.4. If C is a �nite closed set, then it contains a recurrent state. If, in addition, C is a commu-

nicating class, then all states in C are recurrent.

Proof. It su�ces to prove the �rst statement as the second then follows from Theorem 8.3.

To this end, suppose that C is a �nite closed set with ρyy < 1 for all y ∈ C. Then Ex [N(y)] =
ρxy

1−ρyy
< ∞

for all x, y ∈ C, so, since C is �nite, we have the contradiction that for any x ∈ C,

∞ >
∑
y∈C

Ex [N(y)] =
∑
y∈C

∞∑
n=1

pn(x, y) =

∞∑
n=1

∑
y∈C

pn(x, y) =

∞∑
n=1

1 = ∞

where the penultimate equality follows from the fact that C is closed. □

Corollary 8.1. Every irreducible Markov chain on a �nite state space is recurrent.

Proof. S is closed. □

Theorem 8.3 provides a simple test of transience:

If there exists a y ∈ S such that ρxy > 0 and ρyx < 1, then [x] is transient.

Theorem 8.4 gives a similar recurrence test for states in a �nite communicating class:

If |[x]| <∞ and ρxy > 0 implies ρyx > 0, then [x] is recurrent.

(The assumptions imply that [x] is closed since ρxw > 0 implies ρwx > 0, hence w ∈ [x]; and y ∈ [x] \ {x}
and ρyz > 0 implies ρxz ≥ ρxyρyz > 0, so ρzx > 0 as well, hence z ∈ [x].)
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To recap, we can partition the state space into communicating classes, each of which is either recurrent or

transient.

All classes containing at least two states (as well as certain single-state classes, such as those consisting of

an absorbing state) are irreducible.

Communicating classes are not necessarily closed, but Theorem 8.3 shows that any communicating class

containing a recurrent element is both closed and irreducible.

It follows from Proposition 8.1 that the set of recurrent states R = {x ∈ S : ρxx = 1} can be expressed as a

disjoint union of closed and irreducible communicating classes.

We conclude this discussion by considering recurrence/transience behavior in some concrete examples.

Example 8.1 (Random Walks on Finite Groups). If G is a �nite group and Xn is a Markov chain on G

with transition function p(g, h) = µ(hg−1) for some probability µ on G, then Xn is irreducible if and only if

the support of µ, Σ = {g ∈ G : µ(g) > 0}, generates G. If so, then for any r, s ∈ G, there exist gi1 , ..., gik ∈ Σ

such that gik · · · gi1 = sr−1, hence ρrs ≥ pk(r, s) ≥ µ(gi1) · · ·µ(gik) > 0. If not, there is some g ∈ G which

cannot be expressed as a �nite product of terms in Σ, so ρeg = 0 where e is the identity in G.

Whether or not the chain is irreducible, all states are recurrent. If Xn is not irreducible, then Σ generates

a proper subgroup H < G. The communicating classes are precisely the right cosets of H, and they are all

closed.

Example 8.2 (Branching Processes).

If the o�spring distribution has mass p0 > 0 at zero (i.e. there is positive probability that an individual has

no children), then for every k ≥ 1, ρk0 ≥ pk0 > 0. Since ρ0k = 0 for all such k, we see that every state k ≥ 1

is transient. 0 is recurrent because p(0, 0) = 1.

Example 8.3 (Birth and Death Chains on N0).

Denote

p(i, i+ 1) = pi, p(i, i− 1) = qi, p(i, i) = ri

where q0 = 0 and pk−1, qk > 0 for k ≥ 1. (The latter condition ensures that the chain is irreducible.)

Let N = inf {n ≥ 0 : Xn = 0}. We will de�ne a function φ : N0 → R so that φ (XN∧n) is a martingale.

We begin by imposing the conditions φ(0) = 0 and φ(1) = 1. For the martingale property to hold when

Xn = k ≥ 1, we must have

φ(k) = pkφ(k + 1) + rkφ(k) + qkφ(k − 1),

or

(pk + qk)φ(k) = (1− rk)φ(k) = pkφ(k + 1) + qkφ(k − 1).

Dividing by pk and rearranging gives

φ(k + 1)− φ(k) =
qk
pk

(
φ(k)− φ(k − 1)

)
.

55



Since φ(1)− φ(0) = 1, we have

φ(m+ 1)− φ(m) =

m∏
j=1

qj
pj

for m ≥ 1,

hence

φ(n) = φ(1) +

n−1∑
m=1

(
φ(m+ 1)− φ(m)

)
= 1 +

n−1∑
m=1

m∏
j=1

qj
pj

=

n−1∑
m=0

m∏
j=1

qj
pj

for n ≥ 1

where we adopt the convention that the empty product equals 1.

Now for any a < x < b, let T = Ta ∧ Tb where Tz = inf{n ≥ 1 : Xn = z}.

Since φ (XT∧n) is a bounded martingale and XT ∈ {a, b} Px-a.s., optional stopping gives

φ(x) = Ex[φ(XT )] = φ(b)Px (Ta > Tb) + φ(a) [1− Px (Ta > Tb)] ,

hence

Px(Ta > Tb) =
φ(x)− φ(a)

φ(b)− φ(a)
.

Taking a = 0, b =M gives

Px (T0 > TM ) =
φ(x)

φ(M)
,

so letting M → ∞ and observing that TM ≥M − x, we see that 0 is recurrent if and only if

M∑
m=0

m∏
j=1

qj
pj

= φ(M) → ∞ as M → ∞.

(φ is increasing and thus has a limit φ(∞) ∈ [1,∞]. If φ(∞) = ∞, then P1(T0 = ∞) = 0, hence 0 is recurrent

as the chain started at 0 is either 0 or 1 after one time step. If φ(∞) < ∞, then P1(T0 = ∞) = 1
φ(∞) > 0,

so as long as p0 > 0, there is positive probability that the chain started at 0 never returns.)
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9. Stationary Measures

De�nition. If Xn is a Markov chain with state space (S,S) and transition function p, we say that a measure

µ ̸≡ 0 on (S,S) is a stationary measure for Xn if it satis�es the equilibrium equation

µ(y) =
∑
x∈S

µ(x)p(x, y)

for every y ∈ S. If µ is a probability measure, it is called a stationary distribution.

Of course, if a stationary measure µ is �nite, then π(y) =
µ(y)∑
x µ(x)

is a stationary distribution.

If π is a stationary distribution for Xn, then the equilibrium equation reads Pπ(X1 = y) = π(y).

Using the Markov property and induction, it follows that Pπ(Xn = y) = π(y) for all n, hence the name

stationary.

From the transition operator perspective, the equilibrium equation reads µp = µ, so a stationary measure is

a left eigenfunction with eigenvalue 1.

Example 9.1 (Random Walk on Zd). Here p(x, y) = f(y − x) where f ≥ 0 and
∑

z f(z) = 1. In this case,

µ ≡ 1 is a stationary measure since

µ(y) = 1 =
∑
z

f(z) =
∑
x

1 · f(y − x) =
∑
x

µ(x)p(x, y).

Of course ν ≡ k is also a stationary measure, and in general, any positive multiple of a stationary measure

is stationary.

Note that ν ≡ k is not a stationary distribution since
∑

x ν(x) = ∞.

Example 9.2 (Asymmetric Simple Random Walk). Here S = Z and p(x, x+1) = p, p(x, x−1) = q = 1−p.
The preceding example shows that µ ≡ 1 is a stationary measure. If p ̸= q, another stationary measure is

given by ν(x) =
(

p
q

)x
since∑

x

ν(x)p(x, y) = ν(y − 1)p(y − 1, y) + ν(y + 1)p(y + 1, y)

=

(
p

q

)y−1

p+

(
p

q

)y+1

q =
pyq

qy
+
py+1

qy

=
py(q + p)

qy
=
py

qy
= ν(y).

Example 9.3 (Random Walks on a Finite Group). Suppose that G is a �nite group and Xn is a Markov

chain on G with transition probabilities p(x, y) = f(yx−1) for some probability f on G. Then π ≡ 1
|G| is a

stationary distribution since

π(y) =
1

|G|
=

1

|G|
∑
g∈G

f(g) =
1

|G|
∑
x∈G

f(yx−1) =
∑
x∈G

π(x)p(x, y).
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Example 9.4 (Birth and Death Chains). Here S = N0, p(i, i + 1) = pi, p(i, i) = ri, and p(i, i − 1) = qi,

with q0 = 0 and p(i, j) = 0 for |i− j| > 1.

The measure µ(k) =
∏k

j=1
pj−1

qj
has

µ(i)p(i, i+ 1) = pi

i∏
j=1

pj−1

qj
= qi+1

i+1∏
j=1

pj−1

qj
= µ(i+ 1)p(i+ 1, 1).

Since p(x, y) = 0 if |x− y| > 1, this implies that µ satis�es the detailed balance equations:

µ(x)p(x, y) = µ(y)p(y, x) for all x, y ∈ S.

Summing over x, we have ∑
x

µ(x)p(x, y) = µ(y)
∑
x

p(y, x) = µ(y),

so any such measure is stationary.

IfXn has a stationary distribution which satis�es the detailed balance equations, we say thatXn is reversible.

To see the reason for the nomenclature, observe that if Xn is reversible with respect to π, then

Pπ(X0 = x0, X1 = x1, ..., Xn = xn) = π(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn−1)

= p(x1, x0)π(x1)p(x1, x2) · · · p(xn−1, xn)

= p(x2, x1)p(x1, x0)π(x2) · · · p(xn−1, xn)

= ... = π(xn)p(xn, xn−1) · · · p(x1, x0)

= Pπ(X0 = xn, X1 = xn−1, ..., Xn = x0),

thus in stationarity (X0, X1, ..., Xn) =d (Xn, ..., X1, X0).

Random walks on countable groups (like the �rst three examples) are reversible with respect to counting

measure precisely when f(g) = f(g−1) for all g ∈ G.

Example 9.5 (Simple Random Walk on a Finite Graph). If G = (V,E) is a simple, undirected graph

with |V | < ∞ and Xn is a Markov chain on V with transition probabilities p(x, y) = 1
deg(x)1 {x ∼ y}, then

π(x) = deg(x)
2|E| is a stationary distribution for Xn since

π(x)p(x, y) =
1

2 |E|
1 {x ∼ y} = π(y)p(y, x).

π is a probability measure on V by the �handshaking lemma,�
∑

x∈V deg(x) = 2 |E|, which follows by

observing that if we orient the edges in any way, then |E| =
∑

x deg
+(x) =

∑
x deg

−(x) (where deg+ and

deg− denote the outdegree and indegree, respectively), hence 2 |E| =
∑

x

(
deg+(x) + deg−(x)

)
=
∑

x deg(x).

Reversibility is a very convenient feature for Markov chains to have, but as the term �detailed balance�

suggests, it is much less generic than one might infer from the preceding examples.

For instance, the M/G/1 queue has no reversible measures since if x > y+1, then p(x, y) = 0, but p(y, x) > 0.

We will see shortly that there is a more complicated potential obstruction to reversibility in the case of

irreducible Markov chains, but �rst we present a lemma which is useful in its own right.
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Lemma 9.1. If p is irreducible and µ is a stationary measure for p, then µ(x) > 0 for all states x.

Proof. Since µ(x) ̸≡ 0, there must be some x0 with µ(x0) > 0. Assume that N = {y : µ(y) = 0} ≠ ∅, and
let x0, x1, ..., xk be a sequence of minimal length such that p(xi−1, xi) > 0 for each i = 1, ..., k and xk ∈ N .

Such a sequence exists by irreducibility. Since xk ∈ N , we have that

0 = µ(xk) =
∑
w

µ(w)p(w, xk) ≥ µ(xk−1)p(xk−1, xk).

It follows that µ(xk−1) = 0, contradicting minimality.

(Alternatively, for any y ∈ S, there is an n with pn(x0, y) > 0, so µ(y) = (µpn)(y) ≥ µ(x0)p
n(x0, y) > 0.) □

Theorem 9.1. Suppose that p is irreducible. A necessary and su�cient condition for the existence of a

reversible measure is

(i) p(x, y) > 0 implies p(y, x) > 0,

(ii) For any loop x0, x1, . . . , xn = x0 with
∏n

i=1 p(xi−1, xi) > 0,

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
= 1.

Proof. To prove necessity, we note that any stationary measure has µ(x) > 0 for all x (by Lemma 9.1),

so the detailed balance equations imply that (i) holds. To check the cycle condition, (ii), we observe that

p(xi−1, xi) =
µ(xi)

µ(xi−1)
p(xi, xi−1), so, since x0 = xn, we have

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
=

n∏
i=1

µ(xi)

µ(xi−1)
=
µ(xn)

µ(x0)

n−1∏
i=1

µ(xi)

µ(xi)
= 1.

To show that these conditions are su�cient as well, �x s ∈ S and set µ(s) = 1. By irreducibility, for any

x ∈ S \ {s}, there is a sequence s = x0, x1, . . . , xn = x with
∏n

i=1 p(xi−1, xi) > 0, and we set

µ(x) =

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
.

If s = y0, y1, . . . , ym = x is another such sequence, then (i) implies that
∏m

j=1 p(yj , yj−1) > 0, and

s = x0, x1, . . . , xn = ym, ym−1, . . . , y0 = s is a loop, so (ii) implies that

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
·

m∏
j=1

p(yj , yj−1)

p(yj−1, yj)
= 1.

It follows that µ does not depend on the particular path chosen.

Finally, detailed balance is satis�ed since if p(x, y) > 0, then consideration of the path s = x0, x1, ..., x, y

shows that

µ(y) = µ(x)
p(x, y)

p(y, x)
. □

Though the existence of a reversible measure implies the existence of a stationary measure, it is not a

necessary condition. The following theorem shows that any chain having a recurrent state has a stationary

measure.
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Theorem 9.2. If x is a recurrent state and Tx = inf {n ≥ 1 : Xn = x}, then

µx(y) = Ex

[
Tx−1∑
n=0

1 {Xn = y}

]
=

∞∑
n=0

Px(Xn = y, Tx > n)

de�nes a stationary measure.

The intuition is that µx(y) is the expected number of visits to y in {0, 1, ..., Tx − 1} for the chain started at

x and (µxp) (y) is the expected number of visits to y in {1, ..., Tx}, which is equal since X0 = XTx = x.

Proof. Tonelli's theorem shows that∑
y

µx(y)p(y, z) =
∑
y

p(y, z)

∞∑
n=0

Px(Xn = y, Tx > n)

=

∞∑
n=0

∑
y

Px(Xn = y, Tx > n)p(y, z)

=

∞∑
n=0

∑
y

Px(Xn = y,Xn+1 = z, Tx > n)

for all z ∈ S.

When z ̸= x, we have ∑
y

µx(y)p(y, z) =

∞∑
n=0

∑
y

Px(Xn = y,Xn+1 = z, Tx > n)

=

∞∑
n=0

Px(Xn+1 = z, Tx > n+ 1)

=

∞∑
m=1

Px(Xm = z, Tx > m)

=

∞∑
n=0

Px(Xn = z, Tx > n) = µx(z)

since Px(X0 = z) = 0.

For the z = x case, we note that

µx(x) =

∞∑
n=0

Px(Xn = x, Tx > n) = Px(X0 = x, Tx > 0) = 1,

so ∑
y

µx(y)p(y, x) =

∞∑
n=0

∑
y

Px(Xn = y,Xn+1 = x, Tx > n)

=

∞∑
n=0

∑
y

Px(Xn = y, Tx = n+ 1)

=

∞∑
n=0

Px(Tx = n+ 1)

=

∞∑
m=1

Px(Tx = m) = 1 = µx(x)

since x recurrent implies Tx ∈ [1,∞) a.s.
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Finally, we observe that µx(y) <∞ for all y. To see that this is so, note that since x is recurrent, it follows

from Theorem 8.3 that if ρxy > 0, then ρyx = 1, hence pn(y, x) > 0 for some n ∈ N.
As µx = µxp implies that µx = µxp

n, we have

1 = µx(x) = (µxp
n)(x) =

∑
w

µx(w)p
n(w, x) ≥ µx(y)p

n(y, x),

thus µx(y) ≤ 1
pn(y,x) <∞.

On the other hand, if ρxy = 0, then the de�nition of µx implies that µx(y) = 0 <∞. □

To complement the previous existence result, we have

Theorem 9.3. If p is irreducible and recurrent, then the stationary measure is unique up to multiplication

by a positive constant.

Proof. Fix s ∈ S and de�ne Ts, µs as in Theorem 9.2. For any stationary measure ν and any z ̸= s, we have

ν(z) =
∑
y

ν(y)p(y, z) = ν(s)p(s, z) +
∑
y ̸=s

ν(y)p(y, z).

Repeating this decomposition gives

ν(z) = ν(s)p(s, z) +
∑
y ̸=s

ν(s)p(s, y) +∑
x̸=s

ν(x)p(x, y)

 p(y, z)

= ν(s)p(s, z) +
∑
y ̸=s

ν(s)p(s, y)p(y, z) +
∑
y ̸=s

∑
x ̸=s

ν(x)p(x, y)p(y, z)

= ν(s)Ps(X1 = z) + ν(s)Ps(X1 ̸= s,X2 = z) + Pν(X0 ̸= s,X1 ̸= s,X2 = z).

Continuing in this fashion yields

ν(z) = ν(s)

n∑
m=1

Ps(X1, ..., Xm−1 ̸= s,Xm = z) + Pν(X0, ..., Xn−1 ̸= s,Xn = z)

≥ ν(s)

n∑
m=1

Ps(X1, ..., Xm−1 ̸= s,Xm = z) = ν(s)

n∑
m=0

Ps(Xm = z, Ts > m).

Letting n→ ∞ shows that ν(z) ≥ ν(s)µs(z) for all z ̸= s.

Since µs(s) = 1, we have ν(s) ≥ ν(s)µs(s) as well, hence ν(x) ≥ ν(s)µs(x) for all x ∈ S.

Now ν and µs are stationary and µs(s) = 1, so∑
x

ν(x)pn(x, s) = ν(s) = ν(s)µs(s) = ν(s)
∑
x

µs(x)p
n(x, s),

and thus ∑
x

(ν(x)− ν(s)µs(x)) p
n(x, s) = 0

for all n ∈ N.

As ν(x) ≥ ν(s)µs(x), this implies that ν(x) = ν(s)µs(x) for all x with pn(x, s) > 0. Because p is irreducible

and n is arbitrary, we conclude that ν(x) = ν(s)µs(x) for all x ∈ S. □
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The foregoing guarantees existence and uniqueness (up to scaling) of stationary measures under certain

relatively mild assumptions.

However, it may be the case that some (and thus every) stationary measure is in�nite, so that no stationary

distribution exists.

Theorem 9.4. If there is a stationary distribution π, then all states y ∈ S with π(y) > 0 are recurrent.

Proof. Suppose that π(y) > 0 and recall that N(y) =
∑∞

k=1 1 {Xk = y} satis�es Ex[N(y)] = ρxy
∑∞

k=0 ρ
k
yy.

Thus if we start the chain in stationarity, we have

Eπ[N(y)] =
∑
x

π(x)Ex[N(y)] =
∑
x

π(x)ρxy

∞∑
k=0

ρkyy ≤
∑
x

π(x)

∞∑
k=0

ρkyy =

∞∑
k=0

ρkyy.

On the other hand, since πpn = π, we see that

Eπ[N(y)] =
∞∑

n=1

Pπ(Xn = y) =

∞∑
n=1

∑
x

π(x)pn(x, y) =

∞∑
n=1

π(y) = ∞.

Combining these equations shows that

∞∑
k=0

ρkyy ≥ Ex[N(y)] = ∞,

hence ρyy = 1. □

Now Lemma 9.1 says that if p is irreducible, then any stationary measure µ has µ(x) > 0 for all x, thus

Theorem 9.4 shows that if an irreducible Markov chain has a transient state, then it cannot have a stationary

distribution.

We will see shortly that recurrence is not quite su�cient for an irreducible Markov chain to have a stationary

distribution, but �rst we show that if one exists (which is necessarily unique by Theorem 9.3), then it must

be given by the following theorem.

Theorem 9.5. If p is irreducible and has a stationary distribution π, then π(x) =
1

Ex[Tx]
.

Proof. Irreducibility implies that π(x) > 0 for all x ∈ S by Lemma 9.1, so Theorem 9.4 shows that all states

are recurrent.

It follows from Theorem 9.2 that

µx(y) =

∞∑
n=0

Px(Xn = y, Tx > n)

de�nes a stationary measure with µx(x) = 1.

By Tonelli's theorem and the layer cake representation, we have∑
y

µx(y) =
∑
y

∞∑
n=0

Px(Xn = y, Tx > n)

=

∞∑
n=0

∑
y

Px(Xn = y, Tx > n) =

∞∑
n=0

Px(Tx > n) = Ex[Tx].
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By Theorem 9.3, the stationary measure is unique up to positive scaling, so the unique stationary distribution

is given by

π(x) =
µx(x)

Ex[Tx]
=

1

Ex[Tx]
. □

Observe that Theorem 9.5 gives the interesting identity∑
x

p(x, y)

Ex[Tx]
=
∑
x

π(x)p(x, y) = π(y) =
1

Ey[Ty]
.

A notable example of an irreducible Markov chain which does not have a stationary distribution is simple

random walk on Z: We have seen that the expected �rst return time is in�nite, so Theorem 9.5 shows that

there cannot be a stationary distribution.

De�nition. If a state x has Ex[Tx] < ∞, we say that x is positive recurrent. If x is a recurrent state with

Ex[Tx] = ∞, then x is called null recurrent.

Theorem 9.6. If p is irreducible, then the following are equivalent.

(i): Some x is positive recurrent

(ii): There is a (unique) stationary distribution

(iii): All states are positive recurrent.

Proof. If x is positive recurrent, then the preceding proof shows that

π(y) =
µx(y)

Ex[Tx]
=

1

Ex[Tx]

∞∑
n=0

Px(Xn = y, Tx > n)

de�nes a stationary distribution (which is unique by Theorem 9.3), thus (i) implies (ii).

If π is a stationary distribution, then Theorem 9.5 shows that π(y) =
1

Ey[Ty]
for all y. Since Lemma 9.1

implies that π(y) > 0 for all y, we must have Ey[Ty] <∞, hence (ii) implies (iii).

As (iii) trivially implies (ii), the proof is complete. □

We observe that Theorem 9.2 and the proof of Theorem 9.5 show that if any state x is positive recurrent,

then πx(y) =
µx(y)

Ex[Tx]
de�nes a stationary distribution, regardless of irreducibility. Also, since x is recurrent,

the communicating class [x] is closed and irreducible. Applying Theorem 9.6 to the chain restricted to [x]

shows that positive recurrence is a class property.

Thus we have an extra layer in our classi�cation of states: Each communicating class is either recurrent or

transient, and each recurrent class is either positive recurrent or null recurrent. Moreover, for each positive

recurrent class, there is a unique stationary distribution which is positive on all states in the class and 0 for

all other states.
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10. Convergence Theorems

If a state y is transient, then for all states x, we have

∞∑
n=1

pn(x, y) =

∞∑
n=1

Px(Xn = y) = Ex[N(y)] =
ρxy

1− ρyy
<∞,

hence pn(x, y) → 0 as n→ ∞.

As termwise convergence to 0 is not su�cient for summability, the converse is not necessarily true.

Let Nn(y) =
∑n

m=1 1{Xm = y} be the number of visits to y by time n.

Theorem 10.1. Suppose that y is recurrent. Then for any x ∈ S,

lim
n→∞

1

n
Nn(y) =

1

Ey[Ty]
1{Ty <∞} Px-a.s.

Proof. We begin by considering the chain started at y. Let R(k) = inf{n ≥ 1 : Nn(y) = k} be the time of

the kth return to y.

Set t1 = R(1) = Ty and tk = R(k) − R(k − 1) for k ≥ 2. Since we have assumed that X0 = y, the strong

Markov property implies that t1, t2, ... are i.i.d. Thus it follows from the strong law of large numbers that

R(n)

n
=

1

n

n∑
k=1

tk → Ey[Ty] Py-a.s.

Observing that R (Nn(y)) is the time of the last visit to y by time n and R (Nn(y) + 1) is the time of the

�rst visit to y after time n, we see that R (Nn(y)) ≤ n < R (Nn(y) + 1), thus

R (Nn(y))

Nn(y)
≤ n

Nn(y)
<
R (Nn(y) + 1)

Nn(y) + 1
· Nn(y) + 1

Nn(y)
.

Letting n→ ∞ and noting that Nn(y) → ∞ a.s. (because y is recurrent) yields

n

Nn(y)
→ Ey[Ty] Py-a.s.

When the initial state is x ̸= y, we �rst note that if Ty = ∞, then Nn(y) = 0 for all n, hence

Nn(y)

n
→ 0 on {Ty = ∞}.

The strong Markov property shows that, conditional on {Ty < ∞}, t2, t3, ... are i.i.d. with Px(tk = n) =

Py(Ty = n). It follows that

R(k)

k
=
t1
k

+
t2 + ...+ tk

k − 1
· k − 1

k
→ 0 + Ey[Ty] Px-a.s.

Thus, arguing as before, we see that for all x ∈ S,

Nn(y)

n
→ 1

Ey[Ty]
Px-a.s.

on {Ty <∞}. Adding our observation about the {Ty = ∞} case completes the proof □

Theorem 10.1 helps to explain the terminology for recurrent states: y is positive recurrent if, when we start

the chain at y, the asymptotic fraction of time spent at y is positive. y is null-recurrent if this fraction is 0.
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To connect this result with our opening remarks about the n → ∞ behavior of pn(x, y), we note that
Nn(y)

n ≤ 1, so the bounded convergence theorem gives

1

n

n∑
m=1

pm(x, y) =
Ex[Nn(y)]

n
→ Ex

[
1

Ey[Ty]
1{Ty <∞}

]
=
Px(Ty <∞)

Ey[Ty]
=

ρxy
Ey[Ty]

.

(This holds for y transient as well since Ey[Ty] = ∞ in that case.)

In particular, if y is positive recurrent and accessible from x, then
ρxy

Ey [Ty ]
> 0, so it cannot be the case that

pn(x, y) → 0. In other words, if ρxy > 0 and pn(x, y) → 0, then y is transient or null recurrent.

More precisely, we have

Corollary 10.1. A recurrent class [w] is null recurrent if and only if
1

n

n∑
m=1

pm(x, y) → 0 for any/all

x, y ∈ [w].

We are now in a position to upgrade Corollary 8.1 to

Theorem 10.2. Every irreducible Markov chain on a �nite state space is positive recurrent and thus has a

unique stationary distribution.

Proof. We know that irreducible �nite state space chains are recurrent. Suppose that such a chain was null

recurrent, then for any x, y ∈ S 1
n

∑n
m=1 p

m(x, y) → 0. But since S is �nite, this implies that

1 =
1

n

n∑
m=1

∑
y

pn(x, y) =
∑
y

1

n

n∑
m=1

pn(x, y) → 0,

a contradiction. □

The preceding analysis shows that the Cesàro mean 1
n

∑n
m=1 p

m(x, y) always converges.

If p is irreducible and positive recurrent, the limit is
ρxy

Ey[Ty]
=

1

Ey[Ty]
= π(y).

However, the following simple examples show that the sequence pn(x, y) may not converge in the ordinary

sense:

Example 10.1. Consider the chain on Z/mZ with transition probabilities p(x, x + 1) = 1, where addition

is taken modulo m. This chain is irreducible and positive recurrent (with uniform stationary distribution),

but pk(x, y) = 1 if k ≡ y − x (mod m) and pk(x, y) = 0 otherwise, hence pk(x, y) is divergent for all x, y.

Example 10.2. Consider the random transposition shu�e which proceeds by choosing two distinct cards at

random and interchanging them. This is the random walk on Sn driven by the uniform measure on transpo-

sitions. By construction, pk(σ, η) = 0 if k is even and sgn(σ)sgn(η) = −1 or k is odd and sgn(σ)sgn(η) = 1.

However, one can show that for any k ≥ n, pk(x, y) ≥ 1

(n2)
n if the parity of ση and k agree.

In both cases, the periodicity problem can be sidestepped by adding �laziness� - that is, expanding the support

of the measure driving the walk to include the identity - so that the chain has some positive probability of

staying put at each step.
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Inspired by the obstructions to convergence in the preceding examples, we are led to make the following

de�nition,

De�nition. For any x ∈ S, set Ix = {n ≥ 1 : pn(x, x) > 0}. dx = gcd(Ix) is called the period of x where

gcd(∅) = ∞.

Note that Ix ⊆ N is nonempty precisely when ρxx > 0. In this case, dx ≤ min(Ix). In particular, dx = 1 if

p(x, x) > 0.

Lemma 10.1. If x ∼ y, then dy = dx.

Proof. We may assume that x ̸= y so that ρxy, ρyx > 0. Let K and L be such that pK(x, y), pL(y, x) > 0.

Then

pK+L(y, y) ≥ pL(y, x)pK(x, y) > 0,

so dy |(K + L) .

If n is such that pn(x, x) > 0, then

pK+n+L(y, y) ≥ pL(y, x)pn(x, x)pK(x, y) > 0,

so we also have that dy |(K + L+ n) , and thus dy |n . As n ∈ Ix is arbitrary, it follows that dy |dx .

Interchanging the roles of x and y shows that dx |dy as well, and we conclude that dy = dx. □

De�nition. We say that a state x is aperiodic if dx = 1. If all states in a recurrent Markov chain are

aperiodic, we say that the chain is aperiodic.

Lemma 10.2. If dx = 1, then there is an mx ∈ N such that pm(x, x) > 0 for all m > mx.

Proof. We �rst observe that there is a �nite Fx ⊂ Ix such that gcd(Fx) = gcd(Ix) = 1. To see that this is

so, note that d(n) = gcd (Ix ∩ [1, n]) is a nonincreasing N-valued function and thus can only decrease a �nite

number of times. Let N = max {n ∈ N : d(n) < d(n− 1)} and set Fx = Ix ∩ [1, N ] = {b1, ..., bn}.

Now the Euclidean Algorithm shows that there are integers a1, ..., an with
∑n

i=1 aibi = 1.

Set a = maxi |ai|, b =
∑

i bi. For any m ∈ N, there exist q, r ∈ N0 with r < b such that

m = qb+ r = q
∑
i

bi + r
∑
i

aibi =
∑
i

(q + rai)bi.

If q ≥ ab, then q + rai ≥ 0 for all i. In other words, every integer greater than ab2 can be written as a sum

of elements in Fx ⊂ Ix. Since Ix is closed under addition, this means that Ix contains every integer greater

than mx = ab2. □
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If K is the transition matrix for an irreducible and aperiodic Markov chain with �nite state space S, then it

follows from Lemma 10.2 that there is an N ∈ N such that Kn(x, y) > 0 for all x, y ∈ S whenever n ≥ N :

For each x, y, there is an n(x, y) ∈ N such that pn(x,y)(x, y) > 0 by irreducibility. Since S is �nite,

M = max(x,y) n(x, y) exists in N.

Letting L = maxxmx with mx as in Lemma 10.2, we see that for any n ≥ L + M and any x, y ∈ S,

pn(x, y) ≥ pn(x,y)(x, y)pn−n(x,y)(y, y) > 0 since n(x, y) ≤M , hence n− n(x, y) ≥ L ≥ my.

Now since K is stochastic, it has spectral radius 1, and since KN is a positive matrix, the Perron-Frobenius

theorem ensures that 1 is a simple eigenvalue.

Perron-Frobenius also shows that KN has a left eigenvector π with πKN = π, π(x) > 0 for all x, and∑
x π(x) = 1. It follows that K has unique and strictly positive stationary distribution π.

Moreover, letting w ≡ 1 denote the appropriately normalized right eigenvector with eigenvalue 1, Perron-

Frobenius implies limm→∞
(
KN

)m
= wπ, the matrix with all rows equal to π.

Finally, writing K in Jordan normal form and recalling that the eigenvalues satisfy λ0 = 1 > |λ1| ≥ |λ2| ≥ ...,

we see thatKn converges as well (with exponential rate given by |λ1|), henceKn(x, y) → π(y) for all x, y ∈ S.

When the state space is countably in�nite, we no longer have these linear algebra tools and the above

argument does not apply. However, if we tack on the assumption of positive recurrence (so that a stationary

distribution exists), we can still arrive at the same conclusion.

Theorem 10.3. Suppose that p is irreducible, aperiodic, and positive recurrent with countable state space

S. Then there is a probability measure π on S which satis�es

lim
n→∞

pn(x, y) = π(y)

for all states x, y.

Proof. De�ne a transition probability p̃ on S × S by

p̃ ((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2).

For any x, y ∈ S, aperiodicity gives pm(x, x) > 0 whenever m > mx, and irreducibility shows that there

exists n(x, y) ∈ N with pn(x,y)(x, y) > 0.

It follows that for any (x1, y1), (x2, y2) ∈ S × S,

p̃n(x1,x2)+n(y1,y2)+m ((x1, y1), (x2, y2)) = pn(x1,x2)+n(y1,y2)+m(x1, x2)p
n(x1,x2)+n(y1,y2)+m(y1, y2)

≥ pn(x1,x2)(x1, x2)p
n(y1,y2)+m(x2, x2)p

n(y1,y2)(y1, y2)p
n(x1,x2)+m(y2, y2) > 0

whenever m ≥ mx2
∨my2

, hence p̃ is irreducible.
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Also, since p is irreducible and positive recurrent, it has a unique stationary distribution, π.

De�ne π̃ ((x, y)) = π(x)π(y). Then π̃ is a stationary distribution for p̃ since∑
(w,y)∈S×S

π̃ ((w, y)) p̃ ((w, y), (x, z)) =
∑
w∈S

π(w)p(w, x)
∑
y∈s

π(y)p(y, z) = π(x)π(z) = π̃ ((x, z)) .

Since p̃ is irreducible and has a stationary distribution, it follows from Theorem 9.6 that all states in S × S

are positive recurrent.

Now let (Xn, Yn) be a Markov chain on S×S with transition probability p̃ and let T = inf{n : Xn = Yn} be

the hitting time of the diagonal D = {(y, y) : y ∈ S}. Since p̃ is irreducible and recurrent, the hitting time

of any point in D is a.s. �nite (by Theorem 8.3), thus T <∞ a.s.

By considering the time and location of the �rst intersection and appealing to the Markov property, we see

that

P (Xn = y, T ≤ n) =

n∑
m=1

∑
x∈S

P (T = m,Xm = x,Xn = y)

=

n∑
m=1

∑
x∈S

P (T = m,Xm = x)P (Xn = y |Xm = x )

=

n∑
m=1

∑
x∈S

P (T = m,Ym = x)P (Yn = y |Ym = x )

= P (Yn = y, T ≤ n).

It follows that

P (Xn = y) = P (Xn = y, T ≤ n) + P (Xn = y, T > n)

= P (Yn = y, T ≤ n) + P (Xn = y, T > n)

Since

P (Yn = y) = P (Yn = y, T ≤ n) + P (Yn = y, T > n),

we have

|P (Xn = y)− P (Yn = y)| = |P (Xn = y, T > n)− P (Yn = y, T > n)|

≤ P (Xn = y, T > n) + P (Yn = y, T > n),

and thus ∑
y

|P (Xn = y)− P (Yn = y)| ≤ 2P (T > n).

If we take X0 = x, Y0 ∼ π, this says that∑
y

|pn(x, y)− π(y)| ≤ 2P (T > n) → 0

and the proof is complete. □
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11. Coupling

Let p denote the transition function for a time homogeneous Markov chain X0, X1, ... on a countable state

space S, so that p(x, y) = P (Xt+1 = y |Xt = x ) for all t ∈ N0, x, y ∈ S.

The k-step transitions are given recursively by

pk(x, z) = P (Xt+k = z |Xt = x ) =
∑
y∈S

pk−1(x, y)p(y, z).

In the |S| = N < ∞ case, we think of p as an N × N matrix and the above is just the formula for matrix

exponentiation.

In general, p is an operator which acts on functions (�column vectors�) by

(pf)(x) =
∑
y

p(x, y)f(y) = E [f(Xt+1) |Xt = x ]

and acts on probabilities (�row vectors�) by

(µp)(y) =
∑
x

µ(x)p(x, y) = P (Xt+1 = y |Xt ∼ µ ) .

Thus if the chain has initial distribution µ0 = L (X0), then the distribution of Xt is µ0p
t.

We know that if p is irreducible, aperiodic, and positive recurrent, then it has a unique stationary distribution

π and limn→∞ pn(x, y) = π(y) for all x, y ∈ S.

(If S is �nite, the assumption of positive recurrence is redundant.)

In applications such as MCMC, we want to know how fast the chain converges - that is, how big does t need

to be for µ0p
t to be close to π.

To make this question more precise, we need a metric on probabilities.

De�nition. The total variation distance between probabilities µ and ν on a countable set S is de�ned as

∥µ− ν∥TV =
1

2

∑
s∈S

|µ(s)− ν(s)| .

It is routine to verify that total variation de�nes a metric, and that we have the equivalent characterizations

∥µ− ν∥TV = max
A⊆S

(µ(A)− ν(A))

=
1

2
max

∥f∥∞≤1
(Eµ[f ]− Eν [f ]) .

(The maxima are attained by A = {s : µ(s) > ν(s)} and f = 1A − 1AC .)

Also, it is clear from the original de�nition that ∥µn − ν∥TV → 0 implies µn → ν pointwise. The converse

implication does not necessarily hold when the state space is in�nite.

Note that the proof of Theorem 10.3 actually established that pnx → π in total variation.
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When speaking of Markov chain mixing, we often want a measure of distance which is independent of the

initial distribution, so we de�ne

d(t) = sup
µ0

∥∥µ0p
t − π

∥∥
TV

.

In the case where the initial distribution is a point mass, we write ptx = δxp
t.

It is left as an exercise to show that an equivalent de�nition is

d(t) = sup
x∈S

∥∥ptx − π
∥∥
TV

.

Also, it is often useful to consider the distance between two copies of the chain started at di�erent states,

and we de�ne

d(t) = sup
x,y∈S

∥∥ptx − pty
∥∥
TV

.

Another good exercise is to establish the inequality

d(t) ≤ d(t) ≤ 2d(t).

One of the main goals in the modern theory of Markov chains is to estimate the ε-mixing time

tmix(ε) = min {t ∈ N0 : d(t) ≤ ε} .

Remarkably, in many cases of interest the mixing time is asymptotically independent of ε.

Here we are thinking of a sequence of chains p(1), p(2), ... where p(n) has state space S(n), stationary distri-

bution π(n), and ε-mixing time t
(n)
mix(ε).

For example, p(n) may represent a particular method of shu�ing n cards, simple random walk on the n-

dimensional hypercube, Glauber dynamics for the Ising model on the torus (Z/nZ)d, and so forth.

We say that the sequence p(n) exhibits the cuto� phenomenon if

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1

for all ε ∈ (0, 1).

This means that tmix(ε1) and tmix(ε2) di�er only in lower order terms.

Writing

d(n)(t) = sup
x∈S(n)

∥∥∥δxpt(n) − π(n)

∥∥∥
TV

,

this is equivalent to the requirement that

lim
n→∞

d(n)

(
ct

(n)
mix

)
=

{
1, c < 1

0, c > 1

where t
(n)
mix = t

(n)
mix

(
1
4

)
. (The choice of 1

4 is arbitrary but standard.)

That is, when time is scaled by t
(n)
mix, d(n)(t) approaches a step function. Essentially, the distance to equilib-

rium stays near 1 for a while and then abruptly drops and tends rapidly to 0.
70



A classical method of bounding mixing times is based on the notion of coupling. (In fact, this was the

technique used to prove Theorem 10.3.)

De�nition. If µ and ν are probabilities on (S,S), we say that (X,Y ) is a coupling of µ and ν if X and Y

are S-valued random variables on a common probability space (Ω,F , P ) such that P (X ∈ A) = µ(A) and

P (Y ∈ A) = ν(A) for all A ∈ S.

Lemma 11.1. If (X,Y ) is a coupling of µ and ν, then ∥µ− ν∥TV ≤ P (X ̸= Y ).

Proof. For any A ∈ S,

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A)

= P (X ∈ A,X ̸= Y ) + P (X ∈ A,X = Y )

− P (Y ∈ A,X ̸= Y )− P (Y ∈ A,X = Y )

= P (X ∈ A,X ̸= Y )− P (Y ∈ A,X ̸= Y )

≤ P (X ∈ A,X ̸= Y ) ≤ P (X ̸= Y ). □

When S is countable, one can show that there always exist couplings for which the inequality is an equality,

hence we have the additional de�nition of total variation:

∥µ− ν∥TV = min {P (X ̸= Y ) : (X,Y ) is a coupling of µ and ν} .

* Brie�y, one de�nes w on S × S by

w(z, z) = min{µ(z), ν(z)},

w(x, y) =
(µ(x)− w(x, x)) (ν(y)− w(y, y))

1−
∑

z w(z, z)

and checks that (X,Y ) ∼ w is a coupling with P (X ̸= Y ) = ∥µ− ν∥TV . We leave the veri�cation of this

claim as an exercise.

De�nition. A coupling of a transition probability p on a countable state space S is an S×S-valued process

{(Xt, Yt)}t∈N0
de�ned on some probability space (Ω,F , P ) such that, marginally, {Xt} and {Yt} are each

Markov chains with transition probability p.

Note that we do not require {Xt} and {Yt} to proceed independently or that {(Xt, Yt)} is a Markov chain.

Theorem 11.1. Suppose that {(Xt, Yt)}t∈N0
is a coupling of p with X0 ∼ µ, Y0 ∼ ν. If T is a random time

such that Xt = Yt on {T ≤ t}, then ∥∥µpt − νpt
∥∥
TV

≤ P (T > t) .

Proof. By construction, (Xt, Yt) is a coupling of µpt and νpt. Since {Xt ̸= Yt} ⊆ {T > t}, the coupling

lemma implies ∥∥µpt − νpt
∥∥
TV

≤ P (Xt ̸= Yt) ≤ P (T > t) . □
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When ν = π, Theorem 11.1 gives the bound ∥µpt − π∥TV ≤ P (T > t).

It can also be convenient to take µ = δx and ν = δy to get
∥∥ptx − pty

∥∥
TV

≤ P (Tx,y > t).

One can then bound the distance to stationarity using

d(t) ≤ d(t) ≤ sup
x,y

P (Tx,y > t).

Typically, one considers couplings {(Xt, Yt)}t∈N0 with the property that Xt = Yt implies Xt+1 = Yt+1.

In this case, we can take T = inf{t ≥ 0 : Xt = Yt}.

De�nition. A faithful coupling of a Markov chain with transition matrix p and state space S is a Markov

chain on S × S whose transition probability, q, satis�es

(1)
∑

y′∈S q ((x, y), (x
′, y′)) = p(x, x′) for all x, y, x′ ∈ S.

(2)
∑

x′∈S q ((x, y), (x
′, y′)) = p(y, y′) for all x, y, y′ ∈ S.

Faithful couplings can be modi�ed so that the two trajectories stay together after colliding.

To wit, suppose that {(Xt, Yt)}∞t=0 is a faithful coupling of p and let T = inf{t ≥ 0 : Xt = Yt}.

De�ne Zt =

{
Yt, t ≤ T

Xt, t > T
. Then Z0 ∼ L (Y0), Xt+1 = Zt+1 whenever Xt = Zt, and the strong Markov

property implies that (Xt, Zt) is a coupling of p. (This trick may not work for unfaithful couplings.)

The general idea is that we start one copy of the chain in a speci�ed distribution, let another copy begin

in stationarity, and then let them evolve according to the same transition mechanism until they meet and

proceed simultaneously forever after. As the second chain was stationary to begin with, it remains so for all

time, thus the �rst chain must have equilibrated by the time they couple.

Though the preceding argument captures the intuition, it is not strictly correct as it overlooks a subtle point:

Yt ∼ π for all t does not guarantee that YT ∼ π for a stopping time T .

For example, consider the chain with state space {x, y} and transition probabilities p(x, y) = 1, p(y, x) =

p(y, y) = 1
2 . It is easy to see that π(x) = 1

3 , π(y) =
2
3 is stationary for p. If we let {Xt} be a copy of the

chain started at y, let {Yt} be another copy of the chain with initial distribution π, and let T be the coupling

time of {Xt} and {Yt}, then we necessarily have that YT = y since Wt = x implies that Wt−1 = y for any

chain {Wt} having transition probability p.

Nonetheless, the coupling bound on variation distance still holds and can be quite useful.

Example 11.1 (Lazy Random Walk on the Hypercube). Here S = (Z/2Z)d, p(x, x) = 1
2 , p(x, y) =

1
2d if x

and y di�er in exactly one coordinate, and p(x, z) = 0 otherwise.

That is, at each step we �ip a fair coin. If it comes up heads, we stay put. If it comes up tails, we choose

one of our d neighbors uniformly at random and move there.

As an irreducible random walk on a �nite group (or a simple random walk on a �nite regular graph),

the stationary distribution is uniform. The 1
2 holding probabilities ensure aperiodicity, so the convergence

theorem implies that distribution of the position at time t will approach the uniform distribution as t→ ∞.

We want to know how fast it converges.
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To this end, we let X0 = x and let Y0 have the uniform distribution on S. Let U1, U2, ... be i.i.d. uniform on

{1, ..., d} and let V1, V2, ... be i.i.d. uniform on {0, 1}. All random variables are taken to be independent.

At time t, the U th
t coordinate of each chain is set to Vt and the others remain as they were.

In other words, at every time step we pick a coordinate at random and set its value (in both chains) to 0 or

1 according to a toss of a fair coin.

It is easy to see that {Xt} and {Yt} are each evolving according to p. Moreover, the two chains agree in

coordinate Ut from time t onward, so they have coupled by time T = inf {t : {U1, ..., Ut} = {1, ..., d}}.
Since T does not depend on the initial state, Theorem 11.1 shows that

d(t) = sup
x

∥∥ptx − π
∥∥
TV

≤ P (T > t).

Thus the variation bound reduces to a coupon collector problem:

If we let At
k = {k /∈ {U1, ..., Ut}} for k = 1, ..., d, then

P (T > t) = P

(
d⋃

k=1

At
k

)
≤ dP

(
At

1

)
= d

(
1− 1

d

)t

≤ de−
t
d .

Therefore, if t = d log(d) + cd where c > 0 is chosen so that t ∈ N, then d(t) ≤ e−c, hence the mixing time is

O (d log(d)).

* Using a more sophisticated coupling or other techniques such as Fourier analysis, along with lower bound

arguments like Wilson's method, one can show that the correct rate is 1
2d log(d).

We conclude our discussion with a look at grand couplings.

The idea here is to build copies of the chain started at each possible initial state using a common source of

randomness.

In other words, we wish to construct a collection of random variables {Xx
t : x ∈ S, t ∈ N0} on a common

probability space (Ω,F , P ) such that for each x ∈ S, {Xx
t }∞t=0 is a Markov chain with transition probability

p and initial state Xx
0 = x. To apply the coupling bound, we also need the various trajectories to stay

together after their �rst meeting.

One way to achieve such a setup is through a random mapping representation of p, which is a pair (f, Z)

such that Z is a random variable on (Ω,F , P ) and f : S × Ω → S is a (deterministic) function satisfying

P (f(x, Z) = y) = p(x, y) for all x, y ∈ S.

It is left as an exercise to show that every transition probability on a countable state space S admits a

random mapping representation.

(Hint: Let Z ∼ U(0, 1) and consider the array Fi,j =
∑j

k=1 p(si, sk) where p is the transition function and

{s1, s2, ...} is an enumeration of the state space.)

If (f, Z) is a random mapping representation for p and Z,Z0, Z1, ... is an i.i.d. sequence on (Ω,F , P ), then
a grand coupling is given by taking Xx

0 = x and Xx
t+1 = f(Xx

t , Zt) for each x ∈ S, t ∈ N0.
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Random mapping representations can be represented more compactly as iterates of random functions by

writing ft(·) = f(·, Zt).

If we de�ne

F j
i = fj−1 ◦ fj−2 ◦ · · · ◦ fi+1 ◦ fi for i < j,

then Xt = F t
0(X0) is a forward simulation of the Markov chain with transition probability p and initial

distribution L (X0).

The coalescence time is de�ned by

Tc = inf{t : F t
0 is a constant function}.

It follows from the coupling lemma and the fact that d(t) ≤ d(t) that we have the variation bound

d(t) ≤ P (Tc > t).

* Note that the unique element in the range of FTc
0 is not necessarily distributed according to π as evidenced

by the two-state example given previously. However, if

Rc = inf{t : F 0
−t is a constant function},

then F 0
−Rc

(x) ∼ π.

This observation lies at the heart of the perfect sampling scheme known as coupling from the past.

(Roughly, by time homogeneity and the convergence theorem,

lim
t→∞

P
(
F 0
−t(x) = y

)
= lim

t→∞
P
(
F t
0(x) = y

)
= π(y),

so F 0
−∞, F

∞
0 ∼ π.

If r > Rc, then

F 0
−r = f−1 ◦ · · · ◦ f−Rc

◦ f−Rc−1 ◦ · · · ◦ f−r = F 0
−Rc

◦ f−Rc−1 ◦ · · · ◦ f−r = F 0
−Rc

,

hence F 0
−Rc

= F 0
−∞ ∼ π.

This trick does not work in the forward direction, because if t > Tc, then

F t
0 = ft−1 ◦ · · · ◦ fTc ◦ fTc−1 ◦ · · · ◦ f0 = ft−1 ◦ · · · ◦ fTc ◦ F

Tc
0

is not equal to FTc
0 in general.)

Example 11.2 (Metropolis chain for proper q-colorings). Let G = (V,E) be a graph. A proper q-coloring

of G is an element x ∈ {1, 2, ..., q}V such that x(u) ̸= x(v) whenever {u, v} ∈ E (henceforth u ∼ v).

We can generate an approximation to the uniform distribution on the set Λ of proper q-colorings of G using

the Metropolis algorithm:

From any coloring x, select a vertex v uniformly from V and a color j uniformly from [q]. If j ̸= x(u) for

any u ∼ v, assign v the color j. Otherwise do nothing.
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By applying these dynamics on the larger space Λ̃ = [q]V , we can use a grand coupling to prove

Theorem 11.2. Let G be a graph with n vertices and maximal degree ∆. For the Metropolis chain on proper

q-colorings of G with q > 3∆, we have

tmix(ε) ≤
(
1− 3∆

q

)−1

n log
(n
ε

)
.

Proof. Let (v0, k0), (v1, k1), ... be i.i.d. uniform on V × [q], and for each x ∈ Λ̃, de�ne {Xx
t }t≥0 by Xx

0 = x

and

Xx
t+1(v) =

{
kt, v = vt, X

x
t (u) ̸= kt for all u ∼ v

Xx
t (v), else

.

De�ne the metric ρ on Λ̃ by

ρ(x, y) =
∑
v∈V

1 {x(v) ̸= y(v)} .

Also, for each x ∈ Λ̃, v ∈ V , denote the set of colors of neighbors of v in x by

N (x, v) = {j ∈ [q] : x(u) = j for some u ∼ v} .

Now suppose that x, y ∈ Λ̃ are such that ρ(x, y) = 1. Then x and y di�er at only one vertex, say w.

Let's see what happens to the distance after an update.

Since N (x,w) = N (y, w) by assumption, we have

P (ρ (Xx
1 , X

y
1 ) = 0) = P (v0 = w, k0 /∈ N (x,w)) =

1

n
· q − |N (x,w)|

q
≥ q −∆

nq
.

Similarly,

P (ρ (Xx
1 , X

y
1 ) = 2) ≤ P (v0 ∼ w, k0 = y(w)) + P (v0 ∼ w, k0 = x(w))

=
|{u ∈ V : u ∼ w}|

n
· 1
q
+

|{u ∈ V : u ∼ w}|
n

· 1
q
≤ 2∆

nq
.

The only other possible value for ρ(Xx
1 , X

y
1 ) is 1, so we have

E [ρ (Xx
1 , X

y
1 )− 1] = −1 · P (ρ(Xx

1 , X
y
1 ) = 0) + 0 · P (ρ(Xx

1 , X
y
1 ) = 1) + 1 · P (ρ(Xx

1 , X
y
1 ) = 2)

≤ 2∆

nq
− q −∆

nq
=

3∆− q

nq
,

or

E [ρ (Xx
1 , X

y
1 )] ≤ 1− q − 3∆

nq
.

If x, z ∈ Λ̃ are such that ρ(x, z) = r, then there exist x0 = x, x1, ..., xr−1, xr = z such that ρ(xi−1, xi) = 1

for i = 1, ..., r.

It follows from the triangle inequality and the preceding estimate that

E [ρ (Xx
1 , X

z
1 )] ≤

r∑
k=1

E
[
ρ
(
X

xk−1

1 , Xxk
1

)]
≤ r

(
1− q − 3∆

nq

)
= ρ(x, z)

(
1− q − 3∆

nq

)
.
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Since the chain is time homogeneous, we have

E
[
ρ (Xx

t , X
z
t )
∣∣Xx

t−1 = xt−1, X
z
t−1 = zt−1

]
= E

[
ρ
(
X

xt−1

1 , X
zt−1

1

)]
≤ ρ(xt−1, zt−1)

(
1− q − 3∆

nq

)
,

so taking expectation with respect to
(
Xx

t−1, X
z
t−1

)
gives

E [ρ (Xx
t , X

z
t )] ≤ E

[
ρ(Xx

t−1, X
z
t−1)

](
1− q − 3∆

nq

)
,

and thus

E [ρ (Xx
t , X

z
t )] ≤ ρ(x, z)

(
1− q − 3∆

nq

)t

by induction.

Now Chebychev's inequality shows that

P (Xx
t ̸= Xz

t ) = P (ρ (Xx
t , X

z
t ) ≥ 1) ≤ E [ρ (Xx

t , X
z
t )]

≤ ρ(x, z)

(
1− q − 3∆

nq

)t

≤ n

(
1− q − 3∆

nq

)t

for all x, z ∈ Λ̃, hence

d(t) ≤ d(t) ≤ max
x,z∈Λ

P (Xx
t ̸= Xz

t ) ≤ max
x,z∈Λ̃

P (Xx
t ̸= Xz

t )

≤ n

(
1− q − 3∆

nq

)t

≤ n exp

(
−q − 3∆

nq
t

)
.

Since we assumed that q > 3∆, taking t ≥
(
1− 3∆

q

)−1

n log
(
n
ε

)
gives

d(t) ≤ n exp

(
−q − 3∆

nq
t

)
≤ ne− log(n

ε ) = ε. □
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12. Probability Preserving Dynamical Systems

Much of our investigation of probability theory has revolved around the long term behavior of sequences of

random variables. We continue this theme with a cursory look at ergodic theory. Roughly speaking, ergodic

theorems assert that under certain stability and irreducibility conditions time averages converge to space

averages. As usual, we begin with some de�nitions.

De�nition. A sequence X0, X1, ... is said to be stationary if (X0, X1, ...) =d (Xk, Xk+1, ...) for all k ∈ N.

Equivalently, X0, X1, ... is stationary if for every n, k ∈ N0, we have (X0, ..., Xn) =d (Xk, ..., Xn+k).

We have already seen several examples of stationary sequences. For instance, i.i.d. sequences are stationary,

and more generally, so are exchangeable sequences.

Another example of a stationary sequence is a Markov chain X0, X1, ... started in equilibrium.

To treat the general case, we introduce the following construct.

De�nition. Given a probability space (Ω,F , P ), a measurable map T : Ω → Ω is said to be probability

preserving if P
(
T−1A

)
= P (A) for all A ∈ F , where T−1A = {ω ∈ Ω : Tω ∈ A} denotes the preimage of A

under T .

We say that the tuple (Ω,F , P, T ) is a probability preserving dynamical system.

Iterates of T and T−1 are de�ned inductively by T 0ω = ω and, for n ≥ 1,

Tn = T ◦ Tn−1,

T−n = T−1 ◦ T−(n−1) = (Tn)−1.

* We use the inverse image in our de�nitions because A ∈ F does not necessarily imply that TA ∈ F .

Also, beware that some authors say that �P is an invariant measure for T � rather than �T preserves P .�

Finally, observe that since the push-forward measure T∗P = P ◦ T−1 is equal to P , the change of variables

formula shows that ∫
Ω

f ◦ TdP =

∫
Ω

fdT∗P =

∫
Ω

fdP

for all f for which the latter integral is de�ned.

IfX is a random variable on (Ω,F , P ) and T : Ω → Ω is probability preserving, thenXn(ω) = X(Tnω) de�nes

a stationary sequence since for any n, k ∈ N and any Borel set B ∈ Bn+1, if A = {ω : (X0(ω), ..., Xn(ω)) ∈ B},
then

P ((Xk, ..., Xn+k) ∈ B) = P
(
T−kA

)
= P (A) = P ((X0, ..., Xn) ∈ B) .

In fact, every stationary sequence taking values in a nice space can be expressed in this form:

If Y0, Y1, ... is a stationary sequence of random variables taking values in a nice space (S,S), then the Kol-

mogorov extension theorem gives a measure P on
(
SN0 ,SN0

)
such that the coordinate projectionsXn(ω) = ωn

satisfy (X0, X1, ...) =d (Y0, Y1, ...). If we let X = X0 and T = θ (the shift map), then T is probability pre-

serving and Xn(ω) = ωn = (θnω)0 = X(Tnω).
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In light of the preceding observations, we will assume henceforth that we are working with stationary se-

quences of the form Xn(ω) = X(Tnω) for some (S,S)-valued random variable X de�ned on a probability

space (Ω,F , P ) and some probability preserving map T : Ω → Ω.

For subsequent results, we will need a few more de�nitions.

De�nition. Let (Ω,F , P, T ) be a probability preserving dynamical system. We say that an event A ∈ F
is invariant if T−1A = A up to null sets - that is, P

((
T−1A

)
△A

)
= 0 where △ denotes the symmetric

di�erence, E△F = (E \ F ) ∪ (F \ E).

A random variable X is called invariant if X ◦ T = X a.s.

It is left as an exercise to show

Proposition 12.1. I = {A ∈ F : A is invariant} is a sub-σ-�eld of F , and X ∈ I if and only if X is

invariant.

De�nition. We say that T is ergodic if for every invariant event A ∈ I, we have P (A) ∈ {0, 1}.

Ergodicity is a kind of irreducibility requirement: T is ergodic if Ω cannot be decomposed as Ω = A ⊔ B
with A,B ∈ I and P (A), P (B) > 0.

Ergodic maps are good at mixing things up in the sense that they don't �x nontrivial subsets.

A useful test for ergodicity is given by

Proposition 12.2. T is ergodic if and only if every invariant X : Ω → R is a.s. constant.

Proof. Suppose that T is ergodic and X ◦ T = X a.s. For any a ∈ R, the set Ea = {ω ∈ Ω : X(ω) < a} is

clearly invariant since T−1Ea = {ω : X(Tω) < a} = Ea a.s. Ergodicity implies that P (Ea) ∈ {0, 1} for all

a ∈ R, hence X is a.s. constant.

Conversely, suppose that the only invariant random variables are a.s. constant, and let A ∈ I. Then 1A is

an invariant random variable, and thus is a.s. constant, and we conclude that P (A) ∈ {0, 1}. □

Note that the above proof also holds if we restrict our attention to classes of random variables containing

the indicator functions, such as X ∈ Lp (Ω,F , P ).

* For the sake of clarity, we will sometimes use the notation of functions rather than random variables, but

ultimately the two are the same.

Example 12.1 (Rotation of the Circle). Let (Ω,F , P ) be [0, 1) with the Borel sets and Lebesgue measure.

For α ∈ (0, 1), de�ne Tα : Ω → Ω by Tαx = x + α (mod 1). Tα is clearly measurable and probability

preserving.

* We consider Tα a rotation since [0, 1) may be identi�ed with T = {z ∈ C : |z| = 1} via the map x 7→ e2πix.

If α ∈ Q, then α = m
n for some m,n ∈ N with (m,n) = 1, so for any measurable B ∈

[
0, 1

2n

]
with P (B) > 0,

the set O(B) =
⋃n−1

k=0

(
B + k

n (mod 1)
)
is invariant with P (O(B)) ∈ (0, 1), thus Tα is not ergodic.

(Alternatively, the function f(x) = e2πinx is nonconstant and invariant.)
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However, Tα is ergodic whenever α /∈ Q. To see that this is so, we note that any square-integrable

f : [0, 1) → R has Fourier expansion
∑

k∈Z cke
2πikx where ck =

∫ 1

0
f(x)e−2πikxdx and

n∑
k=−n

cke
2πikx → f(x) in L2 ([0, 1)).

If f is invariant, then we have

f(x) = f(Tαx) =
∑
k∈Z

cke
2πik(x+α(mod 1)) =

∑
k∈Z

cke
2πikαe2πikx

(where equality is in the L2 sense). Uniqueness of Fourier coe�cients implies that ck = cke
2πikα for all

k ∈ Z. Since α is irrational, e2πikα ̸= 1 for k ∈ Z \ {0}, so it must be the case that ck = 0 for k ̸= 0.

It follows that any invariant f ∈ L2 is constant, which shows that Tα is ergodic.

Example 12.2 (A�ne Expanding Maps). Again take (Ω,F , P ) to be [0, 1) with Lebesgue measure.

For any integer d ≥ 2, de�ne Tdx = dx (mod 1). Note that T−1
d x =

{
x
d + j

d : j = 0, 1, ..., d− 1
}
. (Throughout

this example, all operations are taken modulo 1 and we suppress the mod notation for convenience.)

For any interval I = [a, b) with 0 ≤ a < b < 1, T−1
d I can be expressed as the disjoint union T−1

d I =
⊔d−1

j=0 Ij

with Ij =
[
a+j
d , b+j

d

)
, so

P
(
T−1
d I

)
=

d−1∑
j=0

(
b+ j

d
− a+ j

d

)
= d

(
b− a

d

)
= P (I).

Thus, by a π − λ argument, Td is probability preserving.

To establish ergodicity, we suppose that f ∈ L2 is invariant with Fourier series
∑

k cke
2πikx.

Then

f (Tdx) =
∑
k∈Z

cke
2πik(dx(mod1)) =

∑
k∈Z

cke
2πikdx,

so comparing coe�cients with f(x) =
∑

k cke
2πikx shows that ck = cdk. Iterating yields ck = cdk = cd2k = ...

Since Parseval's identity gives ∑
k∈Z

|ck|2 =

∫ 1

0

|f(x)|2 dx <∞,

it must be the case that ck = 0 for all k ̸= 0, hence f is constant.

Before moving on to the ergodic theorems, we present the following simple yet incredible result due to Henri

Poincaré.

Theorem 12.1 (Poincaré Recurrence Theorem). Let (Ω,F , P, T ) be a probability preserving dynamical

system, and let U ∈ F . Then for almost every ω ∈ U , Tnω ∈ U in�nitely often.

If T is ergodic and P (U) > 0, then P (Tnω ∈ U i.o.) = 1.

Proof. Let Un =
⋃∞

j=n T
−jU be the set of points ω ∈ Ω that enter U at least once at or after time n.

Then Un+1 = T−1Un, so

P (Un+1) = P
(
T−1Un

)
= P (Un),

hence P (Un) = P (U0) for all n by induction.
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SettingW =
⋂∞

n=0 Un = {ω ∈ Ω : Tnω ∈ U i.o.} and noting that U0 ⊇ U1 ⊇ U2 . . . , it follows from continuity

from above that

P (W ) = lim
n→∞

P (Un) = P (U0).

The set of points in question is V = U ∩ W . Since U,W ⊆ U0 and P (U0) = P (W ), we conclude that

P (U) = P (V ).

For the second claim, note that W is invariant, so ergodicity implies that P (W ) ∈ {0, 1}.
Since P (W ) ≥ P (V ) = P (U) > 0, we must have P (W ) = 1. □

To put Theorem 12.1 in perspective, suppose that Ω is a separable metric space and F contains the Borel

sets for the metric topology. Then we can cover Ω with countably many open balls of arbitrarily small

radius, and almost every point in each ball returns to its neighborhood of origin in�nitely often. It follows

that P (lim infn→∞ d (Tnx, x) = 0) = 1.

This interpretation of the recurrence theorem lends itself to all sorts of amusing inferences about thermody-

namics, cosmology, and so forth, but we will resist the urge to indulge in such speculations here.

A natural question to ask after seeing Theorem 12.1 is �How long does it take to return?� The following

result (due to Mark Kac) says that if T is ergodic, the expected �rst return time for a point in A is
1

P (A)
.

Theorem 12.2. Let (Ω,F , P, T ) be a probability preserving dynamical system with T ergodic, and suppose

that A ∈ F has P (A) > 0. De�ne τA(ω) = inf{n ≥ 1 : Tnω ∈ A}. Then∫
A

τAdP = 1.

Proof.

* In what follows, equality and inclusion are taken to mean �up to a null set.� Because the relevant de�nitions

are stated in these terms and all constructions are countable, there is no harm in being loose on this point

and the argument is much clearer without constant quali�cation.

For each n ∈ N, set An = {ω ∈ A : τA(ω) = n}. The An's are disjoint and the recurrence theorem implies

that their union is A.

Consequently, we have
∞∑

n=1

P (An) = P

( ∞⋃
n=1

An

)
= P (A).

Similarly, for n ≥ 1, de�ne Bn = {ω ∈ Ω : τA(ω) = n}, and let B = ∪∞
n=1Bn.

Since

T−1Bn = {ω ∈ Ω : Tω ∈ Bn} = {ω ∈ Ω : Tn+1ω ∈ A, T kω /∈ A for 2 ≤ k ≤ n} = Bn+1 ∪ T−1An,

we see that

T−1B =

∞⋃
n=1

(
Bn+1 ∪ T−1An

)
=

( ∞⋃
m=2

Bm

)
∪ T−1

∞⋃
n=1

An

=

( ∞⋃
m=2

Bm

)
∪ T−1A =

∞⋃
n=1

Bn = B,

hence B is an invariant set.
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Moreover, An ⊆ Bn by de�nition, so A ⊆ B, and thus P (B) ≥ P (A) > 0. Therefore, it follows from

ergodicity that P (B) = 1.

Since the Bn's are disjoint, we have
∞∑

n=1

P (Bn) = P (B) = 1.

Now we can write ∫
A

τAdP =

∞∑
n=1

nP (An) =

∞∑
n=1

∞∑
k=n

P (Ak),

so if we can show that
∑∞

k=n P (Ak) = P (Bn), then we will obtain

∫
A

τAdP =

∞∑
n=1

∞∑
k=n

P (Ak) =

∞∑
n=1

P (Bn) = 1

as desired.

When m = 1, we have B1 = T−1A by de�nition, so P (B1) = P (A) =
∑∞

k=1 P (Ak).

Now suppose that
∑∞

k=m P (Ak) = P (Bm). Since T−1Bn = Bn+1 ∪ T−1An with Bn+1 and T−1An disjoint

(because ω ∈ T−1An implies Tω ∈ An ⊆ A and thus ω /∈ Bn+1), the fact that T preserves P implies

P (Bn) = P
(
T−1Bn

)
= P (Bn+1) + P (T−1An) = P (Bn+1) + P (An),

so the inductive hypothesis gives

P (Bm+1) = P (Bm)− P (Am) =

∞∑
k=m

P (Ak)− P (Am) =

∞∑
k=m+1

P (Ak).

This completes the inductive step and the proof. □
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13. Ergodic Theorems

Suppose that (Ω,F , P, T ) is a probability preserving dynamical system. If f is a real-valued measurable

function on Ω (i.e. a random variable), we de�ne the nth Birkho� sum as

fn(x) =

n−1∑
k=0

f
(
T kx

)
,

so that 1
nf

n gives the time average over orbit segments of length n.

Ergodic theorems are statements of the form 1
nf

n → f where f is invariant with
∫
Ω
fdP =

∫
Ω
fdP .

If g = f · 1A for A ∈ I, then

1

n
gn =

1

n

n−1∑
k=0

(f · 1A) ◦ T k =
1

n

n−1∑
k=0

(f ◦ Tk)1T−kA =
1

n

n−1∑
k=0

(f ◦ Tk)1A =
1

n
fn · 1A,

so ∫
A

fdP =

∫
Ω

gdP =

∫
Ω

gdP =

∫
A

fdP.

(In the cases we consider, g will satisfy the assumptions of an ergodic theorem if f does.)

Thus, in probabilistic terms, f = E[f |I ].

When T is ergodic, f must be a.s. constant, hence f = E[f ] - the space average.

The �rst proof of an ergodic theorem was by John von Neumann in 1931, establishing convergence in L2

(and thus in L1 by an approximation argument). This result is known as the mean ergodic theorem.

von Neumann's paper was not published until 1932, by which time George Birkho� (after hearing about the

former's work) had already published a proof of the pointwise ergodic theorem establishing a.s. convergence.

We begin with a cute proof of the mean ergodic theorem in L2 due to Frigyes Riesz.

Theorem 13.1. Let S = {g ∈ L2 : g ◦ T = g} and let PS be the projection from L2 onto S. For all f ∈ L2,

one has 1
nf

n → PSf in L2.

Proof. De�ne the Koopman operator U : L2 → L2 by Uf = f ◦ T . Then

⟨Uf,Ug⟩ =
∫
(Uf)(x)(Ug)(x)dP (x)

=

∫
(fg) ◦ T (x)dP (x)

=

∫
(fg)(x)dP (x) = ⟨f, g⟩

where the penultimate equality used the fact that T preserves P .

* This shows that ⟨f, g⟩ = ⟨Uf,Ug⟩ = ⟨f, U∗Ug⟩ for all f, g ∈ L2, so U∗U is the identity. A bounded linear

operator with this property is said to to be an isometry. If U is surjective as well, then UU∗ is also the

identity and we say that U is unitary.

Now set W = {Uh− h : h ∈ L2}. We will show that W⊥ = S.
82



To see that S ⊆W⊥, let f ∈ S, g ∈W so that f = Uf and g = Uh− h for some h ∈ L2. Then

⟨f, g⟩ = ⟨f, Uh− h⟩ = ⟨f, Uh⟩ − ⟨f, h⟩ = ⟨Uf,Uh⟩ − ⟨f, h⟩ = 0,

so, since g ∈W was arbitrary, we have that f ∈W⊥.

For the reverse inclusion, let f ∈W⊥ so that for every h ∈ L2, we have ⟨f, Uh− h⟩ = 0, hence

⟨f, h⟩ = ⟨f, Uh⟩ = ⟨U∗f, h⟩

Since h was arbitrary, this implies that U∗f = f .

Accordingly, we have

∥Uf − f∥22 = ⟨Uf − f, Uf − f⟩

= ⟨Uf,Uf⟩ − ⟨Uf, f⟩ − ⟨f, Uf⟩+ ⟨f, f⟩

= ∥f∥22 − ⟨f, U∗f⟩ − ⟨U∗f, f⟩+ ∥f∥22
= 2 ∥f∥22 − 2 ⟨f, f⟩ = 0,

and we conclude that f ∈ S.

Since W is clearly a subspace of L2 (though not necessarily closed), we have L2 =W ⊕W⊥ =W ⊕ S.

(If V is a closed subspace of a Hilbert space H, then H = V ⊕ V ⊥.

Since W ⊆W , W
⊥ ⊆W⊥, so H =W ⊕W

⊥ ⊆W +W⊥ ⊆ H.

To see that the latter sum is direct, note that x ∈W ∩W⊥ implies ⟨x, x⟩ = ⟨x, limn xn⟩ = limn ⟨x, xn⟩ = 0.)

Now if f ∈ S, then Ukf = f for all k ≥ 0, so

1

n
fn =

1

n

n−1∑
k=0

Ukf =
1

n
· nf = f,

hence 1
nf

n → f = PSf .

If g = Uh− h ∈W , then

gn =

n−1∑
k=0

Ukg =

n−1∑
k=0

(
Uk+1h− Ukh

)
= Unh− h,

thus 1
ng

n = 1
n (Unh− h) → 0 = PSg. (Recall that convergence is in the L2 sense.)

If g ∈W , there exists a sequence gi ∈W with gi → g, so for any ε > 0, taking i so that ∥g − gi∥2 < ε shows

that we can take n large enough that∥∥∥∥∥ 1n
n−1∑
k=0

Ukg

∥∥∥∥∥
2

≤ 1

n

n−1∑
k=0

∥∥Uk (g − gi)
∥∥
2
+

∥∥∥∥∥ 1n
n−1∑
k=0

Ukgi

∥∥∥∥∥
2

< 2ε,

since U is an isometry and 1
n

∑n−1
k=0 U

kgi → 0, so 1
ng

n → 0 for g ∈W .

Finally, if F ∈ L2, then F = f + g with f ∈ S, g ∈W , so 1
nF

n = 1
nf

n + 1
ng

n → f = PSF in L2. □

* Note that the limit function f = PSf is the projection of f onto the space of T -invariant functions in L2.

Theorem 1.6 shows that this is E[f |I ].

Also, it is worth observing that the above proof shows more generally that if U is a linear isometry on a

Hilbert space H, then
∥∥∥ 1
n

∑n−1
k=0 U

kx− Pker(U−I)x
∥∥∥→ 0 for all x ∈ H.
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Analogous to the development of conditional expectation in terms of projection, we have

Corollary 13.1. If f ∈ L1, then 1
nf

n → f in L1 where f is invariant with
∫
Ω
fdP =

∫
Ω
fdP .

Proof. Since bounded L1 functions are dense in L1 and are square integrable, for any ε > 0, there is a

g ∈ L1
b = {h ∈ L1 : ∥h∥∞ < ∞} such that ∥f − g∥1 < ε. Since g ∈ L1

b ⊆ L2, Theorem 13.1 shows that
1
ng

n → g in L2 where g = PSg.

As ∥·∥1 ≤ ∥·∥2 (by Hölder's inequality), we have that 1
ng

n → g in L1.

Now choose n big enough that
∥∥ 1
ng

n − g
∥∥
1
< ε. Since∥∥∥∥ 1nfn − 1

n
gn
∥∥∥∥
1

≤ 1

n

n−1∑
k=0

∥∥(f − g) ◦ T k
∥∥
1
≤ ∥f − g∥1 < ε,

we have that
∥∥ 1
nf

n − g
∥∥
1
≤
∥∥ 1
nf

n − 1
ng

n
∥∥
1
+
∥∥ 1
ng

n − g
∥∥
1
< 2ε for n su�ciently large.

Eliminating g shows that for all large m,n, we have∥∥∥∥ 1nfn − 1

m
fm
∥∥∥∥
1

≤
∥∥∥∥ 1nfn − g

∥∥∥∥
1

+

∥∥∥∥g − 1

m
fm
∥∥∥∥
1

< 4ε,

so 1
nf

n has a limit f in L1 (by completeness).

Invariance follows from uniqueness of L1 limits since

1

n
fn ◦ T =

1

n

n∑
k=1

f ◦ T k =
n+ 1

n
· 1

n+ 1

n∑
k=0

f ◦ T k − 1

n
f →L1 f,

and

lim
n→∞

∫ ∣∣∣∣ 1nfn ◦ T − f ◦ T
∣∣∣∣ dP = lim

n→∞

∫ ∣∣∣∣( 1

n
fn − f

)
◦ T
∣∣∣∣ dP = lim

n→∞

∫ ∣∣∣∣ 1nfn − f

∣∣∣∣ dP = 0.

Finally, L1 convergence, Fubini's theorem, and the fact that T preserves P imply∫
Ω

fdP = lim
n→∞

∫
Ω

1

n
fndP = lim

n→∞

1

n

n−1∑
k=0

∫
Ω

f ◦ T kdP = lim
n→∞

1

n

n−1∑
k=0

∫
Ω

fdP =

∫
Ω

fdP.

□

The key to proving the pointwise ergodic theorem is

Theorem 13.2 (Maximal Ergodic Theorem). Suppose that f ∈ L1 and de�ne

M(f) = {x ∈ Ω : supn≥1 f
n(x) > 0}. Then

∫
M(f)

fdP ≥ 0.

Proof. Write FN (x) = max0≤k≤N fk(x) where we adopt the convention that f0 ≡ 0.

Then F1 ≤ F2 ≤ . . . pointwise, so the sets MN (f) = {x ∈ Ω : FN (x) > 0} form a nested increasing sequence

with M(f) =
⋃∞

N=1MN (f).

Now for every k = 0, 1, ..., N ,

FN (Tx) + f(x) = f(x) + max
0≤j≤N

f j(Tx) ≥ f(x) + fk(Tx)

= f(x) +

k−1∑
j=0

f(T j+1x) =

k∑
j=0

f(T jx) = fk+1(x),

hence f(x) ≥ fk(x)− FN (Tx) for k = 1, ..., N + 1.
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Because FN (x) = max1≤k≤N fk(x) for x ∈MN (f), this shows that f(x) ≥ FN (x)−FN (Tx) for x ∈MN (f).

As FN is nonnegative and equal to 0 on Ω \MN (f), we have∫
MN (f)

fdP ≥
∫
MN (f)

FNdP −
∫
MN (f)

FN ◦ TdP

=

∫
Ω

FNdP −
∫
MN (f)

FN ◦ TdP

≥
∫
Ω

FNdP −
∫
Ω

FN ◦ TdP = 0.

Finally, since MN (f) ↗M(f), the dominated convergence theorem shows that∫
M(f)

fdP = lim
N→∞

∫
MN (f)

fdP ≥ 0.

□

Corollary 13.2. If Mα(f) = {x : supn≥1
1
nf

n(x) > α}, then
∫
Mα(f)

fdP ≥ αP (Mα(f)).

Proof. Let g = f − α. Then

gn =

n−1∑
k=0

(f − α) ◦ T k =

n−1∑
k=0

(
f ◦ T k − α

)
= fn − nα,

so 1
ng

n = 1
nf

n − α, and thus

Mα(f) =

{
x : sup

n≥1

1

n
fn(x) > α

}
=

{
x : sup

n≥1

1

n
fn(x)− α > 0

}
=

{
x : sup

n≥1

1

n
gn(x) > 0

}
=

{
x : sup

n≥1
gn(x) > 0

}
=M(g).

Therefore, the maximal ergodic theorem implies

0 ≤
∫
M(g)

gdP =

∫
Mα(f)

(f − α) dP =

∫
Mα(f)

fdP − αP (Mα(f)) .

□

Corollary 13.3. If A ⊆M(f) is T -invariant, then
∫
A
fdP ≥ 0.

Proof. Since T−1A = A up to a null set, 1A ◦ T = 1A a.s., so if g = f · 1A, then

gn =

n−1∑
k=0

(f · 1A) ◦ T k =

n−1∑
k=0

(
f ◦ T k

)
· 1A = fn · 1A.

It follows that

M(g) =

{
x ∈ Ω : sup

n≥1
gn(x) > 0

}
=

{
x ∈ A : sup

n≥1
fn(x) > 0

}
= A ∩M(f) = A,

and thus ∫
A

fdP =

∫
M(g)

gdP ≥ 0.

□
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We are now in a position to prove

Theorem 13.3 (Pointwise Ergodic Theorem). For any f ∈ L1,

lim
n→∞

1

n
fn = f a.s.

where f ∈ L1 is invariant with
∫
Ω
fdP =

∫
Ω
fdP .

Proof. Set

f+(x) = lim sup
n→∞

1

n
fn(x),

f−(x) = lim inf
n→∞

1

n
fn(x).

Clearly f+ and f− are invariant with f−(x) ≤ f+(x) for all x. We wish to show that f+ = f− a.s., so we

need to show that M = {x : f−(x) < f+(x)} has P (M) = 0.

For α, β ∈ Q, let Mα,β = {x : f−(x) < α, f+(x) > β}. Then M =
⋃

α,β∈QMα,β , so it su�ces to show that

P (Mα,β) = 0 for all α, β ∈ Q with α < β.

We note at the outset that the invariance of f+ and f− imply that Mα,β is an invariant set.

Now let M+
β = {x : f+(x) > β}. If x ∈ M+

β , then there is some n ∈ N such that 1
nf

n(x) > β, so

(f − β)n(x) = fn(x)− nβ > 0, hence x ∈M(f − β).

Since Mα,β ⊆M+
β ⊆M(f − β) is invariant, Corollary 13.3 shows that

∫
Mα,β

(f − β)dP ≥ 0, hence∫
Mα,β

fdP ≥ βP (Mα,β).

Similarly, if x ∈M−
α := {x : f−(x) < α}, then there is an m with 1

mf
m < α, so (α− f)m > 0.

It follows that Mα,β ⊆M−
α ⊆M(α− f), so that

∫
Mα,β

fdP ≤ αP (Mα,β).

Thus we have shown that

βP (Mα,β) ≤
∫
Mα,β

fdP ≤ αP (Mα,β) ,

so since α < β, we conclude that P (Mα,β) = 0 as desired. This shows that 1
nf

n has an almost sure limit f∗.

By Corollary 13.1, we also have that 1
nf

n → f in L1, and Fatou's lemma gives∫ ∣∣f∗ − f
∣∣ dP =

∫
lim inf

n

∣∣∣∣ 1nfn − f

∣∣∣∣ dP ≤ lim inf
n

∫ ∣∣∣∣ 1nfn − f

∣∣∣∣ dP = 0,

so f∗ = f a.s.

In light of previous observations, this shows that 1
nf

n converges a.s. to f = E[f |I ]. □

It is left as a homework exercise to use Theorem 13.3 to extend the mean ergodic theorem to

Theorem 13.4. If f ∈ Lp, 1 ≤ p <∞, then 1
nf

n → E[f |I ] in Lp.

We conclude our discussion of ergodic theorems with some examples.
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Example 13.1 (Strong Law of Large Numbers). Suppose that X1, X2, ... is an i.i.d. sequence with X1 ∈ L1.

We can think of the Xi's as coordinate projections on the probability space (RN,BN, P ) from Kolmogorov's

theorem with P arising from �nite dimensional distributions given by product measure.

If θ is the shift map, then (RN,BN, P, θ) is a probability preserving dynamical system.

An invariant set A has {ω ∈ A} = {θω ∈ A} ∈ σ(X2, X3, ...). Iterating shows that

A ∈
⋂∞

n=1 σ(Xn, Xn+1, ...) = T , the tail �eld.
Since Kolmogorov's 0− 1 law shows that T is trivial, this shows that I is trivial, hence θ is ergodic.

The pointwise ergodic theorem gives

1

n

n∑
k=1

Xk =
1

n

n−1∑
k=0

X1 ◦ θk → E[X1 |I ] = E[X1],

the strong law of large numbers!

(Corollary 13.1 shows that we also have convergence in L1.)

Example 13.2 (Markov Ergodic Theorem). Suppose that {Xn} is a Markov chain with countable state

space S and stationary distribution π with π(x) > 0 for all x ∈ S. If X0 ∼ π, then X0, X1, ... is stationary

and the shift map is probability preserving.

If R is a recurrent communicating class, then X0 ∈ R implies Xn ∈ R for all n, so {ω : X0(ω) ∈ R} ∈ I.
Thus θ is not ergodic if the chain is not irreducible.

If the chain is irreducible and A is invariant, then, taking Fn = σ(X0, ..., Xn) as usual, it follows from the

Markov property and the invariance of A that

Eπ[1A |Fn ] = Eπ[1A ◦ θn |Fn ] = h(Xn)

where h(x) = Ex[1A].

Levy's 0 − 1 law implies that Eπ[1A |Fn ] → 1A a.s., and since the chain is irreducible and recurrent (by

irreducibility and the existence of a stationary distribution), for every x ∈ S, Pπ(Xn = x i.o.) = 1. This

means that h(Xn) = h(x) in�nitely often for any x ∈ S, so it must be the case that h ≡ 0 or h ≡ 1 a.s. In

other words, Pπ(A) ∈ {0, 1}, so the shift map is ergodic.

For any f ∈ L1(π), applying the ergodic theorem to f ◦X0 yields

1

n

n−1∑
k=0

f(Xk) →
∑
x

f(x)π(x) a.s. and in L1.

Example 13.3 (Equidistribution Theorem). As a �nal example, recall that irrational rotation is ergodic.

Thus Theorem 13.3 shows that for any α ∈ (0, 1) \Q, the map Tω = ω + α (mod 1) satis�es

1

n

n−1∑
k=0

1{T kω ∈ A} → λ(A) a.s.

for all A ∈ B[0,1), where λ is Lebesgue measure.

In fact, we can show

Claim. If A = [a, b), then the exceptional set is ∅.
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Proof. Write Ak =
[
a+ 1

k , b−
1
k

)
. If b− a > 2

k , then the ergodic theorem shows that

1

n

n−1∑
j=0

1{T jω ∈ Ak} → b− a− 2

k

for all ω ∈ Ωk where λ (Ωk) = 1.

Let G =
⋂

k> 2
b−a

Ωk. Then λ(G) = 1, so G is dense in [0, 1), thus for any x ∈ [0, 1), k ∈ N ∩
(

2
b−a ,∞

)
,

we can �nd ωk ∈ G so that |ωk − x| < 1
k .

Since T jωk ∈ Ak implies that T jx ∈ A, we have

lim inf
n→∞

1

n

n−1∑
j=0

1
{
T jx ∈ A

}
≥ lim inf

n→∞

1

n

n−1∑
j=0

1
{
T jωk ∈ Ak

}
= b− a− 2

k
.

As k was arbitrary, we conclude that

lim inf
n→∞

1

n

n−1∑
j=0

1
{
T jx ∈ A

}
≥ b− a.

A similar argument with AC shows that

lim sup
n→∞

1

n

n−1∑
j=0

1
{
T jx ∈ A

}
≤ b− a,

and the claim follows. □

A neat application of this result concerns the distribution of leading digits in the decimal expansion of powers

of 2. The �rst few terms of the sequence of initial digits are

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 5, 1, ...

If 2j has leading digit k, then k · 10m ≤ 2j < (k + 1) · 10m for some m ∈ N0, thus

m+ log10(k) ≤ j log10(2) < m+ log10(k + 1).

If T is rotation by α = log10(2) ∈ (0, 1) \Q, then the above inequality shows that

log10(k) ≤ T j0 < log10(k + 1).

Thus if

Nk(n) =
{
j ∈ [0, n− 1] ∩ Z : k is the �rst digit in the decimal expansion of 2j

}
,

then we have

|Nk(n)|
n

=
1

n

n−1∑
j=0

1
{
log10(k) ≤ T j0 < log10(k + 1)

}
→ log10(k + 1)− log10(k) = log10

(
k + 1

k

)
.

(Of course, one can play the same game with powers and bases other than 2 and 10 and can consider the

leading r digits as well by the same basic reasoning.)

The distribution p(k) = log10
(
k+1
k

)
on {1, ..., 9} is known as Benford's law and it has been shown to model

many real world data sets surprisingly well. It is sometimes used on �nancial and scienti�c data as a method

of fraud detection.
88



The general idea is that if you have a collection of numbers that range over several orders of magnitude and

are approximately uniformly distributed on a logarithmic scale, then the distribution of leading digits should

be close to Benford's law:

x has leading digit d if there is some m with d · 10m ≤ x < (d+ 1) · 10m, or

log10(d) +m ≤ log10(x) < log10(d+ 1) +m,

and the width of the interval [log10(d) +m, log10(d+ 1) +m) is log10
(
d+1
d

)
.

The reason that one wants the data to span several orders of magnitude is that a sample point has leading digit

d if it falls in any of the intervals [log10(d) +m, log10(d+ 1) +m), [log10(d) +m+ 1, log10(d+ 1) +m+ 1),

[log10(d) +m+ 2, log10(d+ 1) +m+ 2), etc..., and averaging over more intervals blurs out local deviations

from log uniformity.

Note that by a standard change of variables argument, a random variable whose logarithm is uniform has

density f(x) ∝ x−1. Thus Benford's law describes the leading digits of random variables which obey power

laws with exponent 1.

One way that this leading digit law might come up is if you were to examine the size of an exponential

growth process at a random time. Basically, this is because exponential growth translates to linear growth

on a logarithmic scale.

As with the power law description, what we are ultimately picking up on is some kind of self-similarity or

scale invariance. This is one reason that Benford's law is so often observed empirically: In many �nancial

applications, you expect the same basic picture whether you're working with dollars or yen. Similarly, if you

are looking at scienti�c data, then it generally shouldn't matter too much whether length is measured in

centimeters or furlongs.

A �nal example in which the law might arise is a process which is subject to successive multiplicative

perturbations, so that its logarithm undergoes additive perturbations (i.e. random walk). The CLT shows

that after many time steps, the law of the log should be approximately normal with huge variance, and this

looks uniform in the central regime.
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14. Brownian Motion

Historically, Brownian motion refers to the random movement of particles suspended in a �uid famously

described by Robert Brown in 1827.

In 1905, Albert Einstein explained this phenomenon in terms of the motion of water molecules. Einstein's

analysis and the experimental veri�cation of his predictions were a major force behind the widespread

acceptance of the atomic hypothesis.

Five years prior to the publication of Einstein's paper, Louis Bachelier gave a mathematical treatment of

Brownian motion in the context of evaluating stock options. This work (Bachelier's PhD thesis) helped usher

in the modern era of mathematical �nance.

The �rst fully rigorous mathematical derivation of Brownian motion was due to Norbert Wiener in a series

of papers in the early 1920s.

It is this Wiener process - the mathematical construct rather than its various physical manifestations - with

which we will concern ourselves here, though we retain the colloquial term �Brownian motion.�

De�nition. A real-valued stochastic process {B(t) : t ≥ 0} is called a (linear) Brownian motion if

(1) For all times 0 ≤ t1 < · · · < tn, B(t1), B(t2) − B(t1), . . . , B(tn) − B(tn−1) are independent random

variables,

(2) For all t ≥ 0, h > 0, the increment B(t+ h)−B(t) is normal with mean 0 and variance h,

(3) The function t 7→ B(t) is almost surely continuous.

If B(0) = x a.s., we say that {B(t) : t ≥ 0} is a Brownian motion started at x.

The case x = 0 is known as standard Brownian motion.

We will sometimes talk about Brownian motion on [0, T ] for some T ≥ 0. This just means that properties

1-3 hold when we restrict our attention to times in [0, T ].

We will only concern ourselves with the one-dimensional case here, but we observe that if B1(t), ..., Bd(t) are

independent linear Brownian motions started at x1, ..., xd, respectively, then B(t) = (B1(t), ..., Bd(t))
T
is a

d-dimensional Brownian motion started at (x1, ..., xd)
T .

On the one hand, we can regard {B(t) : t ≥ 0} as a collection of random variables ω 7→ B(t, ω) de�ned on

some underlying probability space (Ω,F , P ) and indexed by t ∈ [0,∞).

Alternatively, Brownian motion can be thought of as a random function. Speci�cally, Property 3 allows

us to interpret Brownian motion as a random variable taking values in the space of continuous functions

C ([0,∞),R). The target σ-algebra is the Borel sets for the topology of uniform convergence on compact

sets (which coincides with the natural product σ-algebra generated by the coordinate maps πt : f 7→ f(t)).

The reason we don't work in the space of measurable functions from [0,∞) to R with the product σ-algebra

is that every measurable set is then determined by the values of the functions at a countable number of

points, hence the set of continuous functions is not even measurable!

For a �xed ω ∈ Ω, the map t 7→ B(t, ω) is called a sample path or trajectory.

* We will switch freely between the equivalent notations B(t), Bt, B(t, ω), Bt(ω) depending on readability

and whether we want to emphasize the role of ω.
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Before establishing that the process we have de�ned actually exists, we make a few simple observations in

order to familiarize ourselves with our object of study.

Proposition 14.1 (Translation Invariance). If {Bt : t ≥ 0} is a Brownian motion started at x, then for any

y ∈ R, {Bt + y : t ≥ 0} is a Brownian motion started at x+ y.

Proof. Properties 1 and 2 hold since the y terms cancel out and Property 3 holds since adding a constant

preserves continuity. The starting state is B0 + y = x+ y. □

The exact same argument shows that if {Bt}t≥0 is a standard Brownian motion and Y is independent of

{Bt}t≥0, then the process {Xt}t≥0 de�ned by Xt = Bt + Y is a Brownian motion with X0 = Y a.s. Thus

there is no real loss of generality in restricting our attention to standard Brownian motion.

In a similar vein, we have the following Markov property for time shifts.

Proposition 14.2 (Time-shift Invariance). If {B(t) : t ≥ 0} is a Brownian motion and s ≥ 0, then

{B(s+t)−B(s) : t ≥ 0} is a standard Brownian motion and is independent of the process {B(t) : 0 ≤ t ≤ s}.

Proof. Clearly the process starts at B(s)−B(s) = 0. Properties 1 and 2 follow from cancellation of the B(s)

terms and Property 3 holds since the composition of a.s. continuous functions is a.s. continuous.

Now, stochastic processes {X(s) : s ∈ S}, {Y (t) : t ∈ T} are independent if for every m,n ∈ N, s1, . . . , sm ∈
S, t1, ..., tn ∈ T , the random vectors (X(s1), . . . , X(sm)) and (Y (t1), . . . , Y (tn)) are independent.

Since Brownian motion has independent increments, for any t1, . . . , tn ≥ 0, 0 ≤ s1, . . . , sm ≤ s, the vectors

(B(s+ t1)−B(s), . . . , B(s+ tn)−B(s)) and (B(s1), . . . , B(sm)) are independent. (The former is built from

disjoint increments to the right of s and the latter from disjoint increments to the left.) □

Another simple but extremely useful invariance property is

Proposition 14.3 (Di�usive Scaling). If {B(t) : t ≥ 0} is a standard Brownian motion and a ̸= 0, then the

process {X(t) : t ≥ 0} de�ned by X(t) = 1
aB(a2t) is also a standard Brownian motion.

Proof. Again, we just have to verify the de�ning properties. Clearly X(0) =
1

a
B(0) = 0.

If 0 ≤ t1 < · · · < tn, then 0 ≤ a2t1 < · · · < a2tn, so B(a2t1), B(a2t2)−B(a2t1), . . . , B(a2tn)−B(a2tn−1) are

independent, hence

X(t1), X(t2)−X(t1), ..., X(tn)−X(tn−1) =
B(at21)

a
,
B(a2t2)−B(a2t1)

a
, . . . ,

B(a2tn)−B(a2tn−1)

a

are independent.

Similarly, for t ≥ 0, h > 0, B(a2t+ a2h)−B(a2t) is normally distributed with mean 0 and variance a2h, so

X(t+ h)−X(t) =
B(a2t+ a2h)−B(a2t)

a

is normal with mean 0 and variance h.

Finally, X(t) =
1

a
B(a2t) is a composition of a.s. continuous functions and thus is a.s. continuous. □

Observe that taking a = −1 shows that standard Brownian motion is symmetric about 0.

It is sometimes more convenient to express the scaling relation as {Bat}t≥0 =d {
√
aBt}t≥0 for a > 0.
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At this point, it is useful to give the following alternative characterization of Brownian motion.

Theorem 14.1. A real-valued process {Bt}t≥0 with B0 = 0 is a standard Brownian motion if and only if

a) Bt is a Gaussian process - i.e. all of its �nite dimensional distributions are multivariate normal,

b) E[Bt] = 0 and E[BsBt] = s ∧ t,
c) With probability one, t 7→ Bt is continuous.

Proof. To see that Brownian motion is a Gaussian process, �x times 0 < t1 < ... < tn and de�ne

M =


1 0 · · · 0

−1
. . .

. . .
...

...
. . .

. . . 0

0 · · · −1 1

 , D =



1√
t1

0 · · · 0

0 1√
t2−t1

. . .
...

...
. . .

. . . 0

0 · · · 0 1√
tn−tn−1

 .

Properties 1 and 2 show that the random vector

X = DM (B(t1), ..., B(tn))
T
=

(
B(t1)√
t1

,
B(t2)−B(t1)√

t2 − t1
, . . . ,

B(tn)−B(tn−1)√
tn − tn−1

)T

has independent standard normal entries.

Since M and D are nonsingular, the matrix A =M−1D−1 is well-de�ned, so we have

(B(t1), . . . , B(tn))
T
= AX, which is multivariate normal (with mean 0 and covariance AAT ) by de�nition.

Now suppose that s ≤ t. Properties 1 and 2 show that Bs ∼ N (0, s) and Bt − Bs ∼ N (0, t − s) are

independent, so we have

E[Bs] = 0, E[BsBt] = E[Bs(Bt −Bs)] + E[B2
s ] = s.

For the other direction, note that multivariate normals have independent entries if and only if all covariances

are 0. If {B(t)}t≥0 satis�es a and b, then for any r ≤ s ≤ t ≤ u,

E [(B(s)−B(r)) (B(u)−B(t))] = E [B(s)B(u)]− E [B(s)B(t)]− E [B(r)B(u)] + E [B(r)B(t)]

= s− s− r + r = 0,

so Property 1 holds.

Similarly, for any t ≥ 0, h > 0, B(t+h)−B(h) is a di�erence of mean zero normals and thus is normal with

mean zero and variance

Var (B(t+ h)−B(t)) = Var (B(t+ h)) +Var (B(t))− 2Cov (B(t+ h), B(t))

= (t+ h) + t− 2E [B(t+ h)B(t)] = 2t+ h− 2t = h. □

With this alternative de�nition, we can prove two more simple results.

Proposition 14.4 (Time Inversion). Suppose that {B(t) : t ≥ 0} is a standard Brownian motion. Then the

process {X(t) : t ≥ 0} de�ned by

X(t) =

{
0, t = 0

tB
(
1
t

)
, t > 0

is also a standard Brownian motion.
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Proof. Since for any t1, ..., tn > 0,
(
B(t−1

1 ), ..., B(t−1
n )
)T

is a Gaussian vector, so is

(X(t1), ..., X(tn))
T
=


t1 0 · · · 0

0 t2
. . .

...
...

. . .
. . . 0

0 · · · 0 tn


(
B

(
1

t1

)
, ..., B

(
1

tn

))T

.

Also, E[X(0)] = 0 and E[X(t)] = tE
[
B
(
1
t

)]
= 0 for t > 0, and for 0 < s ≤ t, E[X(0)X(t)] = 0 and

E[X(s)X(t)] = stE

[
B

(
1

s

)
B

(
1

t

)]
= st · 1

t
= s.

Finally, the paths t 7→ X(t) are a.s. continuous for t > 0 since compositions of continuous functions are

continuous, so it remains only to demonstrate that limt→0+ X(t) = 0.

Because Q+ = Q ∩ (0,∞) is countable, the foregoing shows that {X(t) : t ∈ Q+} has the same distribution

as {B(t) : t ∈ Q+}, so we must have

P

(
lim
t→0
t∈Q+

X(t) = 0

)
= P

(
lim
t→0
t∈Q+

B(t) = 0

)
= 1.

Since Q+ is dense in (0,∞), we conclude that limt→0+ X(t) = 0 a.s. and the proof is complete. □

Time inversion gives an easy proof of the following fact about the long term behavior of Brownian motion.

Proposition 14.5 (Brownian SLLN). If {B(t) : t ≥ 0} is a standard Brownian motion, then

lim
t→∞

B(t)

t
= 0 a.s.

Proof. Let {X(t) : t ≥ 0} be as in Proposition 14.4. Then

lim
t→∞

B(t)

t
= lim

t→∞
X

(
1

t

)
= lim

s→0+
X (s) = 0 a.s. □

Wiener's Theorem.

Now that we're a little more comfortable working with Brownian motion, it's time to prove that it actually

exists. The main complication lies in the continuity requirement.

To illustrate this issue, observe that if {B(t) : t ≥ 0} is a Brownian motion and U is an independent random

variable which is uniformly distributed on [0, 1], then the process
{
B̃(t) : t ≥ 0

}
de�ned by

B̃(t) =

{
B(t), t ̸= U

0, t = U

has the same �nite dimensional distributions as Brownian motion since P (U ∈ S) = 0 for any �nite S ⊆ [0, 1].

However, B̃(t) is discontinuous whenever B(U) ̸= 0 � that is, with probability one.

There are several ways to go about proving existence. We will pursue a fairly straightforward approach

due to Paul Lévy. The basic idea is to construct standard Brownian motion on [0, 1] as a uniform limit of

continuous functions having the right �nite dimensional distributions on sets of dyadic rationals and then

patch together independent copies to obtain Brownian motion on [0,∞).
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Let Dn =
{

k
2n : k = 0, 1, ..., 2n

}
for n = 0, 1, ..., and set D =

⋃∞
n=0 Dn.

Let (Ω,F , P ) be a probability space on which a collection {Zd : d ∈ D} of independent standard normals

can be de�ned. (Kolmogorov's extension theorem gives one such space.)

For each n ∈ N0, we de�ne random variables B(d), d ∈ Dn so that

(1) For all q < r ≤ s < t in Dn, B(t) − B(s) ∼ N (0, t − s) and B(r) − B(q) ∼ N (0, r − q) are

independent.

(2) The collections {B(d) : d ∈ Dn} and {Zt : t ∈ D \ Dn} are independent.

We begin by taking B(0) = 0 and B(1) = Z1. Now suppose for the sake of induction that {B(d) : d ∈ Dn−1}
satis�es (1) and (2).

We then de�ne B(d) for d ∈ Dn \ Dn−1 by

B(d) =
B (d− 2−n) +B (d+ 2−n)

2
+

Zd

2
n+1
2

.

Since the �rst term is the average of B at points in Dn−1 and the Z ′
ds are independent, the inductive

hypothesis shows that B(d) is the sum of two random variables which are independent of {Zd : t ∈ D \ Dn},
so Property (2) is satis�ed.

The inductive hypothesis also shows that 1
2 [B (d+ 2−n)−B (d− 2−n)] and 2−

n+1
2 Zd are independent nor-

mals having mean 0 and variance 2−(n+1), so their sum

1

2

[
B
(
d+ 2−n

)
−B

(
d− 2−n

)]
+ 2−

n+1
2 Zd

=
B (d+ 2−n) +B (d− 2−n)

2
−B

(
d− 2−n

)
+

Zd

2
n+1
2

= B(d)−B
(
d− 2−n

)
and their di�erence

1

2

[
B
(
d+ 2−n

)
−B

(
d− 2−n

)]
− 2−

n+1
2 Zd

= B
(
d+ 2−n

)
− B (d+ 2−n) +B (d− 2−n)

2
− 2−

n+1
2 Zd = B

(
d+ 2−n

)
−B(d)

are independent and normally distributed with mean 0 and variance 2−n (as proved in the homework).

Since the vector of increments (B(d)−B (d− 2−n) : d ∈ Dn \ {0}) is multinormal (as its coordinates are

linear combinations of independent normals), it has independent entries if they are pairwise independent.

We have already seen that B (d+ 2−n)−B(d) and B(d)−B (d− 2−n) are independent for d ∈ Dn \ Dn−1.

It remains to consider the case where the two intervals lie on opposite sides of some d ∈ Dn−1. For such

pairs, choose d ∈ Dj with j minimal so that the intervals lie in [d− 2−j , d] and [d, d+ 2−j ], respectively.

The inductive hypothesis ensures that B(d)−B
(
d− 2−j

)
and B

(
d+ 2−j

)
−B(d) are independent.

Since the increments in question are constructed from B(d)−B
(
d− 2−j

)
and B

(
d+ 2−j

)
−B(d), respec-

tively, using disjoint subsets of the {Zt : t ∈ Dn}, the desired independence follows.

As the increments {B(d)−B (d− 2−n) : d ∈ Dn \ {0}} are i.i.d. N (0, 2−n), Property (1) is veri�ed and the

inductive step is complete.
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At this point, we have de�ned B(t) on the set D of dyadic rationals so that the �nite dimensional distributions

are as desired.

The next step is to extend the de�nition to all of [0, 1] by interpolation.

Let

F0(t) =


Z1, t = 1

0, t = 0

linear, in between

,

and, for n ≥ 1,

Fn(t) =


2−

n+1
2 Zt, t ∈ Dn \ Dn−1

0, t = Dn−1

linear, between consecutive points in Dn

.

The Fi's are continuous, and we claim that for all n ∈ N0, d ∈ Dn,

B(d) =

n∑
i=0

Fi(d) =

∞∑
i=0

Fi(d).

(We only need to justify the �rst equality since d ∈ Dn implies Fi(d) = 0 for i > n.)

The proof is a simple induction argument:

It holds for n = 0 by construction. Assume that it holds for n− 1.

We need to verify that B(d) =
∑n

i=0 Fi(d) for d ∈ Dn \ Dn−1.

Since Fi is linear on [d− 2−n, d+ 2−n] for 0 ≤ i ≤ n, we have

n−1∑
i=0

Fi(d) =

n−1∑
i=0

Fi (d− 2−n) + Fi (d+ 2−n)

2
=
B (d− 2−n) +B (d+ 2−n)

2
.

The claim follows from the de�nition of B(d) since Fn(d) = 2−
n+1
2 Zt.

We now need to show that the sum
∑∞

i=0 Fi(t) is uniformly convergent.

To this end, we observe that the Zd's are standard normal, so

P (|Zd| ≥ u) =
2√
2π

∫ ∞

u

e−
x2

2 dx ≤ 2√
2π

∫ ∞

u

x

u
e−

x2

2 dx =
2

u
√
2π

∫ ∞

1
2u

2

e−ydy =
2

u
√
2π
e−

u2

2

for all u > 0.

In particular,

P
(
|Zd| ≥

√
4n log(2)

)
≤ 2√

8πn log(2)
e−2n log(2) ≤ 2−2n

for all n ∈ N.

Consequently,

∞∑
n=0

P
(
|Zd| ≥

√
4n log(2) for some d ∈ Dn

)
≤

∞∑
n=0

∑
d∈Dn

P
(
|Zd| ≥

√
4n log(2)

)
≤

∞∑
n=0

2n + 1

22n
<∞.
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Therefore, the �rst Borel-Cantelli lemma shows that there is a (random, but a.s. �nite) N such that

n ≥ N and d ∈ Dn implies|Zd| <
√
4n log(2), hence

∥Fn∥∞ ≤ 2−
n+1
2

√
4n log(2)

whenever n ≥ N .

It follows that, almost surely, B(t) =

∞∑
i=0

Fi(t) is a uniform limit of continuous functions and thus is contin-

uous.

To see that {B(t) : t ∈ [0, 1]} is a standard Brownian motion on [0, 1], we just have to verify that it has the

right �nite dimensional distributions.

But this is an easy consequence of continuity since we have already established the claim on the dense set

D ⊆ [0, 1].

Indeed, let 0 ≤ t1 < ... < tn ≤ 1. Then there exist t1,k ≤ ... ≤ tn,k in D with ti,k → ti as k → ∞, so

continuity gives

lim
k→∞

B(ti+1k)−B(ti,k) = B(ti+1)−B(ti) a.s.

for i = 1, ..., n− 1.

As

lim
k→∞

E [B(ti+1,k)−B(ti,k)] = 0

and

lim
k→∞

Cov (B(ti+1,k)−B(ti,k), B(tj+1,k)−B(tj,k))

= lim
k→∞

1{i = j} (ti+1,k − ti,k) = 1{i = j} (ti+1 − ti) ,

we see that (B(t2)−B(t1), ..., B(tn)−B(tn−1)) is multivariate normal with mean (0, ..., 0)
T
and covariance

Σ = Diag (t2 − t1, . . . , tn − tn−1).

(An easy characteristic functions argument shows that the limit is indeed Gaussian.)

Thus we have constructed a continuous process B : [0, 1] → R with the same �nite dimensional distributions

as standard Brownian motion on [0, 1].

To extend this to all positive times, take a sequence B0, B1, ... of independent C ([0, 1],R)-valued random

variables having the distribution of this process and glue them together end to end.

Speci�cally, de�ne {B(t) : t ≥ 0} by

B(t) = B⌊t⌋(t− ⌊t⌋) +
⌊t⌋−1∑
i=0

Bi(1).

One readily checks that B is an a.s. continuous function from [0,∞) to R which has the right �nite dimen-

sional distributions.
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15. Sample Path Properties

Having shown that Brownian motion exists and established some simple invariance principles, we now turn

our attention to a few basic properties of Brownian paths.

We begin with an easy result which demonstrates some of the peculiarities of Brownian motion.

Theorem 15.1. Almost surely, Brownian motion is not monotone on any interval [a, b], 0 ≤ a < b <∞.

Proof. Fix a nondegenerate interval [a, b]. We can partition [a, b] into n subintervals [ai−1, ai] by picking

a = a0 < a1 < ... < an = b.

If Bt is monotone on [a, b], then each of the increments B(ai)−B(ai−1) has the same sign.

Since the increments are independent mean zero normals, the probability of this occurring is 2 · 2−n.

Thus for any 0 ≤ a < b <∞, n ∈ N, P (Bt is monotone on [a, b]) ≤ 2−(n−1).

Sending n→ ∞ shows that {Bt}t≥0 is not monotone on any particular interval almost surely.

Since there are countably many intervals with rational endpoints and every nondegenerate interval contains

some such interval, the result follows. □

Our next goal is to show that Brownian motion is a.s. locally γ-Hölder continuous for γ < 1
2 .

The key to doing so is the following result which deduces local Hölder continuity from moment bounds.

Theorem 15.2 (Kolmogorov's Continuity Theorem). Let X(t) be a stochastic process with a.s. continuous

sample paths such that

E
[
|X(t)−X(s)|β

]
≤ C |t− s|1+α

for some constants α, β, C > 0 and all times s, t ≥ 0.

Then for each 0 ≤ γ < α
β , T > 0, and almost every ω, there exists a constant K = K(ω, γ, T ) such that

|X(t, ω)−X(s, ω)| ≤ K |t− s|γ for all 0 ≤ s, t ≤ T.

That is, the sample paths t 7→ X(t, ω) are a.s. γ-Hölder continuous on [0, T ].

Proof. By time scaling, it su�ces to consider the case T = 1.

Let D denote the dyadic rationals in [0, 1] as in the proof of Wiener's theorem, and let γ ∈
[
0, αβ

)
.

Chebychev's inequality and our assumption give

P

(
max

1≤k≤2n

∣∣∣∣X ( k

2n

)
−X

(
k − 1

2n

)∣∣∣∣ ≥ 2−γn

)
= P

(
2n⋃
k=1

{∣∣∣∣X ( k

2n

)
−X

(
k − 1

2n

)∣∣∣∣ ≥ 2−γn

})

≤
2n∑
k=1

P

(∣∣∣∣X ( k

2n

)
−X

(
k − 1

2n

)∣∣∣∣ ≥ 2−γn

)

≤
2n∑
k=1

E
[∣∣X ( k

2n

)
−X

(
k−1
2n

)∣∣β]
2−βγn

≤ 2βγnC

2n∑
k=1

(
1

2n

)α+1

= 2(βγ−α)nC.
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Since βγ < α, we see that

∞∑
n=1

P

(
max

1≤k≤2n

∣∣∣∣X ( k

2n

)
−X

(
k − 1

2n

)∣∣∣∣ ≥ 2−γn

)
≤ C

∞∑
n=1

2(βγ−α)n <∞,

so the �rst Borel-Cantelli lemma implies the existence of a set Ω∗ with P (Ω∗) = 1 such that for every ω ∈ Ω∗,

there is an N(ω) ∈ N with

max
1≤k≤2n

∣∣∣∣X ( k

2n
, ω

)
−X

(
k − 1

2n
, ω

)∣∣∣∣ < 2−γn

for all n ≥ N(ω).

Choosing K0 = K0(ω, γ) large enough gives

max
1≤k≤2n

∣∣∣∣X ( k

2n

)
−X

(
k − 1

2n

)∣∣∣∣ < 2−γnK0

for all n ∈ N on Ω∗.

Now suppose that s, t ∈ D with s < t, and let n ∈ N be such that 2−n ≤ t− s < 2−(n−1).

We can write

s =
i

2n
− 1

2p1
− ...− 1

2pk
, t =

j

2n
+

1

2q1
+ ...+

1

2qℓ

with n < p1 < ... < pk, n < q1 < ... < qℓ and i ≤ j.

Moreover, since j
2n − i

2n ≤ t− s < 2−(n−1), we must have |i− j| ≤ 1, hence∣∣∣∣X ( j

2n

)
−X

(
i

2n

)∣∣∣∣ < 2−γnK0.

Also, ∣∣∣∣X ( i

2n
− 1

2p1
− ...− 1

2pr

)
−X

(
i

2n
− 1

2p1
− ...− 1

2pr−1

)∣∣∣∣ ≤ 2−γprK0

for r = 1, ..., k, so, since n < p1 < ... < pk,∣∣∣∣X (s)−X

(
i

2n

)∣∣∣∣ ≤ K0

k∑
r=1

2−γpr ≤ K0

k∑
r=1

2−γ(n+r)

≤ 2−γnK0

∞∑
r=1

2−γr ≤ 2−γnK1

where K1 = (1 ∨
∑∞

r=1 2
−γr)K0.

The exact same reasoning shows that
∣∣X ( j

2n

)
−X (t)

∣∣ ≤ 2−γnK1.

It follows that

|X (t)−X (s)| ≤
∣∣∣∣X (t)−X

(
j

2n

)∣∣∣∣+ ∣∣∣∣X ( j

2n

)
−X

(
i

2n

)∣∣∣∣+ ∣∣∣∣X ( i

2n

)
−X (s)

∣∣∣∣
≤ 2−γnK ≤ K |t− s|γ , K = 3K1,

hence the paths are a.s. γ-Hölder continuous on D.

Because D is dense in [0, 1] and t 7→ X(t) is a.s. continuous, the Hölder condition holds a.s. for all

s, t ∈ [0, 1]. □

Applying the above result to Brownian motion yields
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Theorem 15.3. Let {Bt} t≥0 be a standard Brownian motion, and let T > 0. Then with full probability,

t 7→ Bt is γ-Hölder continuous on [0, T ] for all γ < 1
2 .

Proof. The scaling relation (Proposition 14.3) with a = t− s shows that

E
[
|Bt −Bs|β

]
= E

[
|Bt−s|β

]
= Cβ |t− s|

β
2

where

Cβ = E
[
|B1|β

]
=

1√
2π

∫
|x|β e− x2

2 dx.

Thus when β > 2, Theorem 15.2 applies with α = β
2 − 1, so t 7→ Bt is γ-Hölder continuous for

0 ≤ γ < α
β = 1

2 − 1
β . The result follows by sending β to in�nity. □

In fact, the preceding result is optimal in the sense that

Theorem 15.4. {Bt}t∈[0,1] is not Hölder continuous for any exponent γ ≥ 1
2 .

Proof. (Homework) We wish to show that

sup
s,t∈[0,1]

|Bt −Bs|
|t− s|γ

= ∞ a.s.

whenever γ ≥ 1
2 .

Since xγ1 ≥ xγ2 for 0 < γ1 ≤ γ2, x ∈ [0, 1], it su�ces to establish the result for γ = 1
2 .

De�ne

K(ω) := sup
0≤s<t≤1

|Bt(ω)−Bs(ω)|√
t− s

,

Ki,n(ω) := sup
i−1
n ≤s<t≤ i

n

|Bt(ω)−Bs(ω)|√
t− s

for n ∈ N, i ∈ [n].

The independent increments property of Brownian motion shows that K1,n, ...,Kn,n are independent.

Moreover, the scaling relation shows that {Xt}t∈[0,1] =d {Bt}t∈[0,1] where Xt :=
√
n
(
B i+t

n
−B i

n

)
, hence

Ki,n = sup
i−1
n ≤s<t≤ i

n

|Bt −Bs|√
t− s

= sup
0≤s<t≤1

∣∣∣B t
n+ i−1

n
−B s

n+ i−1
n

∣∣∣√(
t
n + i−1

n

)
−
(
s
n + i−1

n

)
= sup

0≤s<t≤1

√
n
∣∣∣B i+t

n − 1
n
−B i+s

n − 1
n

∣∣∣
√
t− s

=d sup
0≤s<t≤1

√
n
∣∣∣B i+t

n
−B i+s

n

∣∣∣
√
t− s

= sup
0≤s<t≤1

|Xt −Xs|√
t− s

=d sup
0≤s<t≤1

|Bt −Bs|√
t− s

= K.

Because K ≥ max
1≤i≤n

Ki,n for all n ∈ N by construction, it follows that for any M > 0, we have

P (K ≤M) ≤ P (K1,n ≤M, ...,Kn,n ≤M) ≤ P (K ≤M)n.

Since Bt−Bs√
t−s

∼ N (0, 1) for all 0 ≤ s < t ≤ 1, we have that P (K > M) > 0 for all M > 0.

Therefore, the preceding inequality implies that P (K ≤M) = 0 for all M > 0, hence K = ∞ a.s. □

99



One can actually show that Brownian motion is almost surely not γ-Hölder continuous at any point t (which

is a stronger statement than not being γ-Hölder continuous over an interval) whenever γ > 1
2 .

This can be veri�ed by appropriately modifying the proof of the following theorem.

Theorem 15.5. With probability one, Brownian paths are not Lipschitz continuous at any point.

Proof. Fix a constant C ∈ (0,∞) and let

An =

{
ω : there is an s ∈ [0, 1] such that |Bt(ω)−Bs(ω)| ≤ C |t− s| whenever |t− s| ≤ 3

n

}
.

For 1 ≤ k ≤ n− 2, let

Yn,k = max

{∣∣∣∣B(kn
)
−B

(
k − 1

n

)∣∣∣∣ , ∣∣∣∣B(k + 1

n

)
−B

(
k

n

)∣∣∣∣ , ∣∣∣∣B(k + 2

n

)
−B

(
k + 1

n

)∣∣∣∣} ,
and set

Bn =

{
min

1≤k≤n−2
Yn,k ≤ 6C

n

}
.

We will show that An ⊆ Bn. To this end, suppose that ω ∈ An. Then there is an s ∈ [0, 1] with

|Bt(ω)−Bs(ω)| ≤ C |t− s| whenever |t− s| ≤ 3
n .

Let k = max{j ∈ [n− 2] : j−1
n ≤ s}. Then

∣∣ j
n − s

∣∣ ≤ 3
n for j = k − 1, k, k + 1, k + 2, so

∣∣∣∣B( ℓn , ω
)
−B

(
ℓ− 1

n
, ω

)∣∣∣∣ ≤ ∣∣∣∣B( ℓn , ω
)
−B(s, ω)

∣∣∣∣+ ∣∣∣∣B(s, ω)−B

(
ℓ− 1

n
, ω

)∣∣∣∣
≤ C

(∣∣∣∣ ℓn − s

∣∣∣∣+ ∣∣∣∣s− ℓ− 1

n

∣∣∣∣) ≤ C

(
3

n
+

3

n

)
=

6C

n

for ℓ = k, k + 1, k + 2, hence Yn,k(ω) ≤ 6C
n .

Now for any k = 1, ..., n− 2,

P

(
Yn,k ≤ 6C

n

)
=

k+2∏
j=k

P

(∣∣∣∣B( jn
)
−B

(
j − 1

n

)∣∣∣∣ ≤ 6C

n

)
= P

(∣∣∣∣B( 1

n

)∣∣∣∣ ≤ 6C

n

)3

since Brownian motion has stationary independent increments.

Applying the scaling relation with a = 1
n and then using B(1) ∼ N (0, 1) yields

P

(
Yn,k ≤ 6C

n

)
= P

(∣∣∣∣B( 1

n

)∣∣∣∣ ≤ 6C

n

)3

= P

(∣∣∣∣ 1√
n
B (1)

∣∣∣∣ ≤ 6C

n

)3

= P

(
|B (1)| ≤ 6C√

n

)3

=

(
2√
2π

∫ 6C√
n

0

e−
x2

2 dx

)3

≤
(

12C√
2πn

)3

where the �nal inequality is because e−
x2

2 ≤ 1 for x ≥ 0.

Combining our observations shows that

P (An) ≤ P (Bn) = P

(
n−2⋃
k=1

{
Yn,k ≤ 6C

n

})
≤ (n− 2)

(
12C√
2πn

)3

→ 0

as n→ ∞.
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Since A1 ⊆ A2 ⊆ . . ., P (An) is increasing in n, so we conclude that P (An) = 0 for all n.

As C was arbitrary, we have shown that t 7→ Bt is not Lipschitz at any point in [0, 1] with full probability.

The exact same argument shows that

Am
n =

{
there exists an s ∈ [m,m+ 1] such that |Bt −Bs| ≤ C |t− s| whenever |t− s| ≤ 3

n

}
has probability zero for all m,n ∈ N, and the result follows from countable subadditivity. □

Note that if f is di�erentiable at t, then there is a δ > 0 such that |f(t)− f(s)| ≤ (|f ′(t)|+ 1) |t− s| whenever
|t− s| < δ.

In other words, a function is Lipschitz at every point at which it is di�erentiable. Taking the contrapositive

and appealing to Theorem 15.5 yields

Theorem 15.6 (Paley, Wiener, Zygmund). Brownian motion is a.s. nowhere di�erentiable.

In fact, if we de�ne the upper and lower right derivatives of a function by

D∗f(t) = lim sup
h↘0

f(t+ h)− f(t)

h
, D∗f(t) = lim inf

h↘0

f(t+ h)− f(t)

h
,

then one can show that

P

⋂
t≥0

({D∗B(t) = −∞} ∪ {D∗B(t) = ∞})

 = 1.

Indeed, if there is some t0 ∈ [0, 1] such that −∞ < D∗B(t0) ≤ D∗B(t0) <∞, then

lim sup
h↘0

|B(t0 + h)−B(t0)|
h

<∞.

Since B(t) is a.s. continuous (and thus uniformly bounded on compact sets), this means that

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M

for some a.s. �nite M , so that B(t) is �Lipschitz from the right� at t0.

An argument similar to the proof of Theorem 15.5 shows that for any C ∈ (0,∞), the event

{ω : there is some s ∈ [0, 1] such that |B(s+ h, ω)−B(s, ω)| ≤ Ch for all h ∈ [0, 1]}

has probability zero.
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The Hölder continuity results discussed here are not the most precise answer to the question �How continuous

is Brownian motion?�

In 1937, Paul Lévy proved the following theorem regarding Brownian motion's modulus of continuity:

Theorem 15.7. Almost surely,

lim sup
h→0

sup
0≤t≤1−h

|B(t+ h)−B(t)|√
2h log

(
1
h

) = 1.

Though the proof of Theorem 15.7 is not di�cult, we leave it to independent pursuit so that we may explore

more topics.

Before moving on, however, we note that the arguments in Theorems 15.2 and 15.3 provide an alternative

path to proving the existence of Brownian motion.

Namely, one uses the extension theorem to get a process on the dyadic rationals with appropriate �nite

dimensional distributions.

One then argues as before to show that this process satis�es a Hölder condition.

As D is dense in [0, 1], there is a unique continuous extension to [0, 1].

By an easy limiting argument, this continuous version has the correct �nite dimensional distributions.

Though I prefer the approach we have taken since it is more concrete, the above argument has the advantage

that it also works for other continuous processes speci�ed by their �nite dimensional distributions.

Another bene�t is that the starting point is a part of the �nite dimensional distributions, so as with Markov

chains, we have one process Bt(ω) = ω(t) and a family of probability measures {Px}x∈R such that under Px,

Bt is a Brownian motion with Px(B0 = x) = 1.

Measures corresponding to general initial distributions then arise as mixtures: Pµ(A) =
∫
Px(A)dµ(x).
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16. Markov Properties

Our next object is to establish that Brownian motion is a (strong) Markov process and explore some simple

consequences of this fact.

In order to discuss Markov properties, it is necessary to have a referent �ltration.

The de�nitions in continuous time are as one would expect from the discrete case:

Given a probability space (Ω,F , P ), a �ltration is a family of sub-σ-algebras {F(t) : t ≥ 0} with

F(s) ⊆ F(t) ⊆ F for all 0 ≤ s ≤ t.

A process {X(t) : t ≥ 0} on a �ltered probability space (Ω,F , {F(t)}t≥0, P ) is adapted if X(t) is

F(t)-measurable for all t ≥ 0.

If {B(t) : t ≥ 0} is a standard Brownian motion, the obvious candidate is F0(t) = σ (B(s) : 0 ≤ s ≤ t).

B(t) is adapted to this �ltration by construction, and Proposition 14.2 shows that {B(t+ s)−B(s) : t ≥ 0}
is independent of F0(s).

It turns out that a more convenient �ltration is given by F+(s) =
⋂
t>s

F0(t).

{F+(t) : t ≥ 0} is clearly a �ltration with F0(t) ⊆ F+(t).

Intuitively, F0(t) contains all of the information up to time t, while F+(t) contains, in addition, an in�ni-

tesimal peak into the future: A ∈ F+(t) if and only if A ∈ F0(t+ ε) for all ε > 0.

One advantage of working with the latter is that it is right-continuous:⋂
t>s

F+(t) =
⋂
t>s

(⋂
u>t

F0(u)

)
=
⋂
u>s

F0(u) = F+(s).

It is with respect to this right-continuous �ltration that we state

Theorem 16.1 (Markov Property). For every s ≥ 0, {Bt+s −Bs : t ≥ 0} is independent of F+(s).

Proof. Let sn be a strictly decreasing sequence with limn→∞ sn = s.

Let A ∈ F+(s), let t1, ..., tm ≥ 0, and let F : Rm → R be bounded and continuous.

Since A ∈ F+(s) implies A ∈ F0(sn) for all n, Proposition 14.2 shows that

E [F (Bt1+sn −Bsn , ..., Btm+sn −Bsn) 1A] = E [F (Bt1+sn −Bsn , ..., Btm+sn −Bsn)]P (A)

for all n.

Sample path continuity implies

lim
n→∞

Bt+sn −Bsn = Bt+s −Bs a.s.

for all t ≥ 0, so two applications of the dominated convergence theorem give

E [F (Bt1+s −Bs, ..., Btm+s −Bs) 1A] = lim
n→∞

E [F (Bt1+sn −Bsn , ..., Btm+sn −Bsn) 1A]

= lim
n→∞

E [F (Bt1+sn −Bsn , ..., Btm+sn −Bsn)]P (A)

= E [F (Bt1+s −Bs, ..., Btm+s −Bs)]P (A).

As A ∈ F+(s), t1, ..., tm ≥ 0, and F ∈ Cb (Rm,R) were arbitrary, the claim follows. □
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In other words, conditional on F+(s), the process {B(t+ s) : t ≥ 0} is a Brownian motion started at B(s).

When specialized to the germ σ-algebra F+(0), Theorem 16.1 yields

Theorem 16.2 (Blumenthal's 0− 1 Law). The σ-algebra F+(0) is trivial.

Proof. Let A ∈ F+(0). Then A ∈ σ (Bt : t ≥ 0), so Theorem 16.1 implies that A is independent of F+(0).

In particular, A is independent of itself, so P (A) = P (A ∩A) = P (A)P (A), hence P (A) ∈ {0, 1}. □

An interesting consequence of Theorem 16.2 is that standard Brownian motion has positive values, negative

values, and zeros in any time interval (0, ε) almost surely.

Theorem 16.3. Suppose that {B(t) : t ≥ 0} is a standard Brownian motion.

De�ne τ = inf{t > 0 : B(t) > 0} and T = inf{t > 0 : B(t) = 0}. Then P (τ = 0) = P (T = 0) = 1.

Proof. Let Ak =
{
τ < 1

k

}
=
{
Bt > 0 for some 0 < t < 1

k

}
. Then

{τ = 0} =

∞⋂
k=n

Ak ∈ F0

(
1

n

)
for all n ∈ N, so {τ = 0} ∈ F+(0), hence P (τ = 0) ∈ {0, 1}.

To see that P (τ = 0) > 0, observe that for all n ∈ N,

P (An) ≥ P
(
B 1

2n
> 0
)
=

1

2

since B 1
2n

∼ N
(
0, 1

2n

)
, so

P (τ = 0) = P

( ∞⋂
n=1

An

)
= lim

n→∞
P (An) ≥

1

2
.

The exact same argument (or the fact that {Bt}t≥0 =d {−Bt}t≥0) shows that σ = inf {t > 0 : B(t) < 0} = 0

a.s. Since B is a.s. continuous, the intermediate value theorem implies P (T = 0) = 1. □

Because of time inversion, results concerning the t→ 0 behavior of Brownian motion can be used to under-

stand the behavior as t→ ∞.

De�ne G(t) = σ (B(s) : s ≥ t) and let T =
⋂

t≥0 G(t) be the σ-algebra of tail events.

Since T is mapped onto the germ σ-algebra under time inversion, we have

Theorem 16.4. The tail σ-algebra for standard Brownian motion is trivial.

A typical application of Theorem 16.4 is given by

Theorem 16.5. If Bt is a standard Brownian motion, then with probability one,

lim sup
t→∞

Bt√
t
= ∞, lim inf

t→∞

Bt√
t
= −∞.
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Proof. It su�ces to prove the �rst statement as the second then follows from symmetry.

Let K ∈ (0,∞), and recall the inequality

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

An

)
= lim

n→∞
P

( ∞⋃
m=n

An

)

≥ lim
n→∞

(
sup
m≥n

P (An)

)
= lim sup

n→∞
P (An).

It follows from Brownian scaling and the fact that B1 ∼ N (0, 1) that

P

(
Bn√
n
≥ K i.o

)
≥ lim sup

n→∞
P

(
Bn√
n
≥ K

)
= P (B1 ≥ K) > 0.

Since
{

Bn√
n
≥ K i.o

}
∈ T , Theorem 16.4 implies P

(
Bn√
n
≥ K i.o

)
= 1 and the result follows since K was

arbitrary. □

Writing Px for the probability measure which makes {B(t) : t ≥ 0} a Brownian motion started at x, the

previous theorem, along with a.s. continuity and translation invariance shows that

Theorem 16.6. Let Bt be a Brownian motion and let A =
⋂

n∈N {Bt = 0 for some t ≥ n}. Then Px(A) = 1

for all x.

Our �nal application of the Markov property concerns the local and global maxima of Brownian motion.

Theorem 16.7. For a Brownian motion {B(t) : 0 ≤ t ≤ 1}, almost surely

(1) Every local maximum is a strict local maximum.

(2) The set of times where local maxima are attained is countable and dense.

(3) The global maximum is attained at a unique time.

Proof. We begin by showing that for any closed time intervals with disjoint interiors, the maxima of Brownian

motion over each are almost surely distinct:

Let 0 ≤ a1 < b1 ≤ a2 < b2 ≤ 1, and let m1(ω) = maxt∈[a1,b1]B(t, ω), m2(ω) = maxt∈[a2,b2]B(t, ω). (Since

B(t) is almost surely continuous and the intervals in question are compact, m1 and m2 are well-de�ned with

full probability.)

Theorem 16.3 and the Markov property show that for any ε > 0, there almost surely exists some a2 < t <

a2 + ε with B(t)−B(a2) > 0, hence B(a2) < m2 a.s.

Thus for almost every ω, there is a smallest n = n(ω) ∈ N such that m2(ω) is the maximum over
[
a2 +

1
n , b2

]
.

By considering each of these intervals, it su�ces to assume in the proof that b1 < a2.

Applying the Markov property at time b1, we have that B(a2)−B(b1) is independent of m1 −B(b1).

Applying the Markov property at time a2 shows that m2−B(a2) is independent of each of these increments.

Now we can write the event m1 = m2 as

B(a2)−B(b1) = (m1 −B(b1))− (m2 −B(a2)) .

Conditioning on the values of m1 − B(b1) and m2 − B(a2), we see that the right hand side is constant and

the left is a continuous random variable, so this event has probability 0.
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(1) We just proved that all non-overlapping pairs of nondegenerate closed intervals with rational end-

points have distinct maxima. If Brownian motion had a non-strict local maximum, there would be

two such intervals having the same maximum.

(2) The maximum over any nondegenerate closed interval with rational endpoints is a.s. not attained at

the endpoints, so there is a local maximum between any two rational numbers, hence the set of local

maxima is dense. Since every local maximum is a strict local maximum, there are no more maxima

than there are intervals with rational endpoints, which is countable.

(3) For any q ∈ Q ∩ [0, 1], the maxima over [0, q] and [q, 1] are distinct. If the global maximum was

obtained at two points t1 < t2, there would be a rational q ∈ (t1, t2) such that the maxima over [0, q]

and [q, 1] agree.

□

Strong Markov Property.

To state the strong Markov property, we need to understand stopping times in the continuous setting.

Though there are many similarities, beware that not all results for discrete time carry over.

De�nition. Given a �ltered probability space
(
Ω,F , {F(t)}t≥0 , P

)
, we say that a [0,∞]-valued random

variable T is a stopping time if {T ≤ t} ∈ F(t) for all t ≥ 0.

One of the reasons that it is so convenient to work with right-continuous �ltrations is

Theorem 16.8. If {F(t)}t≥0 is right-continuous, then a [0,∞]-valued random variable T is a stopping time

if {T < t} ∈ F(t) for all t ≥ 0.

Proof. For such a T , we have

{T ≤ t} =

∞⋂
k=1

{
T < t+

1

k

}
∈

∞⋂
n=1

F
(
t+

1

n

)
= F(t). □

Thus for right-continuous �ltrations, we recover our de�nition from the discrete setting:

Corollary 16.1. If {F(t)}t≥0 is right-continuous, then a [0,∞]-valued random variable T is a stopping time

if {T = t} ∈ F(t) for all t ≥ 0.

Proof.

{T = t} = {T ≤ t} \ {T < t} ∈ F(t). □

106



To illustrate the utility of Theorem 16.8 (and get some practice working with stopping times), observe that

• If Tn is an increasing sequence of stopping times with respect to {F(t)}t≥0 and Tn ↗ T , then T is

also a stopping time with respect to {F(t)}t≥0:

{T ≤ t} =

∞⋂
n=1

{Tn ≤ t} ∈ F(t).

• If Tn is a decreasing sequence of stopping times with Tn ↘ T , then so is T provided that the �ltration

is right-continuous:

{T < t} =

∞⋃
n=1

{Tn < t} ∈ F(t).

• If K is a closed set, then TK = inf {t ≥ 0 : Bt ∈ K} is a stopping time with respect to
{
F0(t)

}
(and thus F+(t)):

Let D be a countable dense subset of K. Then

{TK ≤ t} =

∞⋂
n=1

⋃
s∈Q∩(0,t)

⋃
x∈D

{
|B(s)− x| < 1

n

}
∈ F0(t).

• If U is an open set, then TU = inf {t ≥ 0 : Bt ∈ U} is a stopping time with respect to {F+(t)}t≥0:

By continuity,

{TU ≤ t} =
⋂
s>t

{TU < s} =
⋂
s>t

⋃
r∈Q∩(0,s)

{B(r) ∈ U} ∈ F+(t).

However, TU is not necessarily a stopping time with respect to
{
F0(t)

}
t≥0

. Indeed, suppose that

U is bounded and U does not contain the starting point. Then we can �nd a path γ : [0, t] → R
with γ(t) ∈ ∂U and {γ(s) : 0 ≤ s < t} ∩ U = ∅. Clearly F0(t) contains no nontrivial subset of

{B(s) = γ(s) for all 0 ≤ s ≤ t}. But if {TU ≤ t} ∈ F0(t), then {B(s) = γ(s) for all 0 ≤ s ≤ t, T = t}
would be a nontrivial subset, a contradiction.

(The �rst statement is because F0(t) only contains information about the paths up to time t, and

the second is because B could either enter U immediately after hitting its boundary or could remain

in the complement for a while.)

De�nition. If T is a stopping time with respect to {F+(t) : t ≥ 0}, the stopped σ-algebra is given by

F+(T ) =
{
A ∈ F : A ∩ {T ≤ t} ∈ F+(t) for all t ≥ 0

}
.

Theorem 16.9 (Strong Markov Property). If {Bt : t ≥ 0} is a Brownian motion and T is an a.s. �nite

stopping time with respect to {F+(t) : t ≥ 0}, then the process

{BT+t −BT : t ≥ 0}

is a standard Brownian motion independent of F+(T ).
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Proof. For n ∈ N, de�ne Tn by Tn =
m+ 1

2n
if
m

2n
≤ T <

m+ 1

2n
.

De�ne the processes

Bn,k(t) = B
(
t+

k

2n

)
−B

( k
2n

)
, B∗

n(t) = B(Tn + t)−B(Tn).

We will show that B∗
n(t) is a standard Brownian motion independent of F+(Tn).

To this end, let E ∈ F+(Tn). For every event {B∗
n ∈ A}, we have

P ({B∗
n ∈ A} ∩ E) =

∞∑
k=1

P
({
Bn,k ∈ A

}
∩ E ∩

{
Tn = k/2n

})
=

∞∑
k=1

P
(
Bn,k ∈ A

)
P
(
E ∩

{
Tn = k/2n

})
since the Markov property implies

{
Bn,k ∈ A

}
is independent of E ∩

{
Tn = k/2n

}
∈ F+

(
k/2n

)
.

Because Bn,k is a standard Brownian motion, P
(
Bn,k ∈ A

)
= P

(
B̃ ∈ A

)
does not depend on n or k, so

P ({B∗
n ∈ A} ∩ E) =

∞∑
k=1

P
(
Bn,k ∈ A

)
P
(
E ∩

{
Tn = k/2n

})
=

∞∑
k=1

P
(
B̃ ∈ A

)
P
(
E ∩

{
Tn = k/2n

})
= P

(
B̃ ∈ A

)
P (E).

Taking E = Ω shows that B∗
n is a standard Brownian motion, hence

P ({B∗
n ∈ A} ∩ E) = P ({B∗

n ∈ A} ∩ E) = P
(
B∗

n ∈ A
)
P (E)

for all A,E, establishing the independence of B∗
n and F+(Tn).

Now Tn ↘ T , so it follows from continuity that

(B (Tn + t2)−B (Tn + t1) , . . . , B (Tn + tm)−B (Tn + tm−1))

→ (B (T + t2)−B (T + t1) , . . . , B (T + tm)−B (T + tm−1)) .

Since the left hand side is multivariate normal with mean zero and covariance diag (t2 − t1, ..., tm − tm−1)

for all n, the right hand side is as well.

As {B (T + t)−B (T ) : t ≥ 0} is clearly a.s. continuous, we see that it is a Brownian motion.

To �nish up, we need to show that {B (T + t)−B (T ) : t ≥ 0} is independent of F+(T ).

This is a simple consequence of the fact that T ≤ Tn implies F+(T ) ⊆ F+(Tn)

(because A ∩ {Tn ≤ t} = (A ∩ {T ≤ t}) ∩ {Tn ≤ t} ∈ F+(t) if A ∈ F+(T )).

Speci�cally, since {B(Tn + t)−B(Tn) : t ≥ 0} is independent of F+(Tn) ⊇ F+(T ), if A ∈ F+(T ),

t1, ..., tm ≥ 0, and F ∈ Cb (Rm,R), then continuity and the dominated convergence theorem give

E [F (B(T + t1)−B(T ), ..., B(T + tm)−B(T )) 1A]

= lim
n→∞

E [F (B(Tn + t1)−B(Tn), ..., B(Tn + tm)−B(Tn)) 1A]

= lim
n→∞

E [F (B(Tn + t1)−B(Tn), ..., B(Tn + tm)−B(Tn))]P (A)

= E [F (B(T + t1)−B(T ), ..., B(T + tm)−B(T ))]P (A).

□
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It is easy to get bogged down in the details of these kind of arguments, but observe that the general strategy

is quite simple. Namely, we approximate T discretely from above, sum over the possible values of Tn, and

apply the ordinary Markov property, just as we did for Markov chains. The rest is just tying up loose ends.

An alternative form of Theorem 16.9 that is sometimes useful is

For any x ∈ R and any bounded measurable f : C ([0,∞),R) → R, we have

Ex

[
f ({B(T + t) : t ≥ 0})

∣∣F+(T )
]
= EB(T )

[
f
({
B̃(t) : t ≥ 0

})]
where expectation on the right is with respect to a Brownian motion

{
B̃(t) : t ≥ 0

}
started at B(T ).

An intriguing consequence of the strong Markov property is

Theorem 16.10 (Re�ection Principle). If T is an a.s. �nite stopping time and {B(t) : t ≥ 0} is a standard

Brownian motion, then the process {B∗(t) : t ≥ 0} de�ned by

B∗(t) = B(t)1 {T ≤ t}+ (2B(T )−B(t)) 1 {T > t}

is also a standard Brownian motion. (B∗ is called Brownian motion re�ected at T .)

Proof. The strong Markov property implies that B(T ) = {BT+t −BT : t ≥ 0} is a standard Brownian motion

which is independent of B = {Bt : 0 ≤ t ≤ T}, hence −B(T ) = {BT −BT+t : t ≥ 0} is as well.

The concatenation map which glues a continuous path {g(t) : t ≥ 0} to a �nite continuous path {f(t) : 0 ≤ t ≤ T}
to form the continuous path ΨT (f, g)(t) = f(t)1 {0 ≤ t ≤ T}+(f(T )− g(0) + g(t− T )) 1 {t > T} is evidently
measurable.

Applying ΨT to B and B(T ) gives the original process B, and applying ΨT to B and −B(T ) gives B∗. The

result follows since
(
B,B(T )

)
=d

(
B,−B(T )

)
. □

It is an interesting fact that Brownian motion re�ected at a random time is still a Brownian motion, but

the real beauty of this result lies in its consequences. For example, with the aid of Theorem 16.10, we can

deduce the marginal distributions of the running maximum of Brownian motion,

M(t) = max
0≤s≤t

B(s).

Theorem 16.11. If a > 0, then

P0 (M(t) > a) = 2P0 (B(t) > a) = P0 (|B(t)| > a) .

Proof. The second equality follows from the symmetry of standard Brownian motion.

For the �rst, let T = inf {t ≥ 0 : B(t) = a}, and let B∗(t) be Brownian motion re�ected at T .

Then

{M(t) > a} = {B(t) > a}
⊔

{M(t) > a,B(t) ≤ a} .

The right-hand side is a disjoint union, the second term of which coincides with {B∗(t) ≥ a}, so Theorem

16.10 gives

P0 (M(t) > a) = P0 (B(t) > a) + P0 (B
∗(t) > a) = 2P0 (B(t) > a) . □
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Our next application of the strong Markov property concerns the zero set of Brownian motion.

First, we take a brief detour to recall a few facts from undergraduate real analysis.

De�nition. A point x in a topological space (X, T ) is called an isolated point of S ⊆ X if there exists some

U ∈ T with x ∈ U and U ∩ S = {x}.

A point x ∈ R is isolated from the right (with respect to S) if there is some ε > 0 such that (x, x+ε)∩S = ∅,
and is isolated from the left if there is some ε > 0 such that (x− ε, x) ∩ S = ∅.
x ∈ R is isolated if and only if it is isolated from the left and from the right.

De�nition. A perfect subset of a topological space (X, T ) is a closed set with no isolated points.

Proposition. A perfect subset of R (with the usual metric topology) is uncountable.

Proof. We �rst note that if x ∈ S and U is an open set containing x, then U ∩ S is in�nite - otherwise, the

open ball centered at x with radius 1
2 miny∈U∩S |x− y| would intersect S only in x.

Now suppose that S can be enumerated as S = {x1, x2, ...}. Let U1 be a bounded open set containing x1.

Then U1 contains in�nitely many points in S. Let k1 = 1 and k2 = min {k ≥ k1 : xk ∈ U1}. Let U2 be an

open set containing xk2 such that U2 ⊆ U1 \
{
xk1

}
. Then set k3 = min {k ≥ k2 : xk ∈ U2}, let U3 be an open

set containing xk3 with U3 ⊆ U2 \
{
xk2

}
, and so on...

De�ne V =
⋂∞

n=1

(
Un ∩ S

)
. Since S and Un are closed subsets of R and Un is bounded, V is the intersection

of a nested decreasing sequence of nonempty compact sets and thus is nonempty. But, by construction,

V ⊆ S does not contain any xk, contradicting the assumption that S can be enumerated. □

Returning to Brownian motion, we have

Theorem 16.12. Let {B(t) : t ≥ 0} be a Brownian motion and de�ne

Zeros = {t ≥ 0 : B(t) = 0} .

Then, almost surely, Zeros is a perfect set and thus is uncountable.

Proof. Since Brownian motion is a.s. continuous, Zeros is closed with probability one. In light of the

preceding proposition, it remains only to show that Zeros almost surely has no isolated point.

To this end, we de�ne for each nonnegative q ∈ Q, τq = inf {t ≥ q : B(t) = 0}. Then τq is a stopping time

which is a.s. �nite by Theorem 16.6. Since Zeros is a.s. closed, P
(
τq ∈ Zeros

)
= 1. Theorem 16.3 and

the strong Markov property applied to τq show that, almost surely, τq is not isolated from the right for all

q ∈ Q ∩ [0,∞).

We will be done if we can show that all other points in Zeros are not isolated from the left. For such t, take

qn ↗ t with qn ∈ Q and de�ne tn = τqn . Then qn ≤ tn < t, so tn ↗ t, hence t is not isolated from the

left. □

110



Markov Processes.

At this point, we need to de�ne precisely what we mean by a continuous time Markov process.

De�nition. A function p : [0,∞)× R× B → [0, 1] is a Markov transition kernel on R if

(1) For all A ∈ B, p(·, ·, A) : [0,∞)× R → [0, 1] is a measurable function of (t, x).

(2) For all t ∈ [0,∞), x ∈ R, p(t, x, ·) is a probability measure on (R,B).

(3) For all A ∈ B, x ∈ R, s, t > 0, p(s+ t, x,A) =

∫
p(s, x, dy)p(t, y, A).

Given a �ltration {F(t) : t ≥ 0}, an adapted process {X(t) : t ≥ 0} is a Markov process with transition kernel

p if for all t > s ≥ 0 and all A ∈ B,

P (X(t) ∈ A |F(s) ) = p (t− s,X(s), A) almost surely.

In words, p(t, x,A) is the probability that the process started at x will be in A at time t.

Theorem 16.1 shows that Brownian motion is a Markov process with respect to {F+(t) : t ≥ 0}.

The transition kernel is

p(t, x,A) =
1√
2πt

∫
A

e−
(y−x)2

2t dy.

That is, p(t, x, ·) is the normal distribution with mean x and variance t.

(The Chapman-Kolmogorov condition here is the statement that the sum of independent normals is normal.)

Likewise, if {B(t) : t ≥ 0} is a standard Brownian motion, the re�ected Brownian motion {X(t) : t ≥ 0} given
by X(t) = |B(t)| is a Markov process (w.r.t. {F+(t) : t ≥ 0}) with transition kernel p(t, x, ·) the modulus

normal distribution - i.e. the law of |W | with W ∼ N (x, t).

The following theorem shows that the di�erence of the maximum process M(t) = sup
0≤s≤t

B(s) and the under-

lying Brownian motion B(t) is a re�ected Brownian motion.

Theorem 16.13. Let {B(t) : t ≥ 0} be a Brownian motion and let {M(t) : t ≥ 0} be the running maximum

process. Then the process {Y (t) : t ≥ 0} given by Y (t) =M(t)−B(t) is a re�ected Brownian motion.

Proof. Since M(0) = B(0), we can assume without loss that B(t) is a standard Brownian motion.

We proceed by �xing s ≥ 0 and de�ning the processes
{
B̂(t) : t ≥ 0

}
and

{
M̂(t) : t ≥ 0

}
by

B̂(t) = B(s+ t)−B(s), M̂(t) = max
0≤u≤t

B̂(u).

Since Y (t) is clearly F+(t)-measurable, we need only show that

P
(
Y (s+ t) ∈ A

∣∣F+(s)
)
= p(t, Y (s), A)

for all t ≥ 0, A ∈ B, where p(t, y, ·) = L (|W |), W ∼ N (y, t).
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As B̂(t) ∼ N (0, t) is independent of F+(s), this is equivalent to showing that, conditional on F+(s), Y (s+ t)

has the same distribution as
∣∣∣B̂(t) + Y (s)

∣∣∣.
Writing M(s + t) = M(s) ∨

(
B(s) + M̂(t)

)
- the max over [0, s + t] is the maximum of the max over [0, s]

and the max over [s, s+ t] - shows that

Y (s+ t) =M(s+ t)−B(s+ t)

=
[
M(s) ∨

(
B(s) + M̂(t)

)]
−
(
B̂(t) +B(s)

)
=
[
M(s)−

(
B̂(t) +B(s)

)]
∨
[(
B(s) + M̂(t)

)
−
(
B̂(t) +B(s)

)]
=
(
Y (s)− B̂(t)

)
∨
(
M̂(t)− B̂(t)

)
=
(
Y (s) ∨ M̂(t)

)
− B̂(t).

We will be done if we prove that for every y ≥ 0,
(
y ∨ M̂(t)

)
− B̂(t) =d

∣∣∣B̂(t) + y
∣∣∣.

To see this, observe that for a ≥ 0,

P
((
y ∨ M̂(t)

)
− B̂(t) > a

)
= P

(
y − B̂(t) > a

)
+ P

(
y − B̂(t) ≤ a, M̂(t)− B̂(t) > a

)
= P

(
y + B̂(t) > a

)
+ P

(
y − B̂(t) ≤ a, M̂(t)− B̂(t) > a

)
since B̂(t) =d −B̂(t).

Thus equality in distribution will follow upon showing that

P
(
y − B̂(t) ≤ a, M̂(t)− B̂(t) > a

)
= P

(
y + B̂(t) < −a

)
.

To this end, let {W (u) : 0 ≤ u ≤ t} be the time reversed Brownian motion W (u) = B̂(t− u)− B̂(t)

(which was shown in the homework to be a standard Brownian motion on [0, t]), and setMW (t) = max
0≤u≤t

W (u).

We have

MW (t) = max
0≤u≤t

(
B̂(t− u)− B̂(t)

)
= max

0≤u≤t
B̂(u)− B̂(t) = M̂(t)− B̂(t)

and W (t) = −B̂(t), so

P
(
y − B̂(t) ≤ a, M̂(t)− B̂(t) > a

)
= P (y +W (t) ≤ a,MW (t) > a) .

Finally, let {W ∗(u) : 0 ≤ u ≤ t} be the process formed by re�ecting W at τa = inf {u :W (u) = a}.

The re�ection principle shows that {W ∗(u) : 0 ≤ u ≤ t} is a standard Brownian motion on [0, t], hence

W ∗(t) =d −B̂(t).

Moreover, it is clear that {y +W (t) ≤ a,MW (t) > a} = {W ∗(t) ≥ a+ y}, so we end up with

P
(
y − B̂(t) ≤ a, M̂(t)− B̂(t) > a

)
= P (y +W (t) ≤ a,MW (t) > a)

= P (W ∗(t) ≥ a+ y) = P
(
−B̂(t) ≥ a+ y

)
= P

(
B̂(t) ≤ −a− y

)
= P

(
B̂(t) + y < −a

)
,

(as B̂(t) is a continuous random variable) and the proof is complete. □
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While the foregoing establishes that {M(t)−B(t) : t ≥ 0} is a Markov process, {M(t) : t ≥ 0} clearly is not.

However, the next result shows that the process which records the times when new maxima are achieved is

Markovian.

Theorem 16.14. For a ≥ 0, de�ne the stopping time

Ta = inf {t ≥ 0 : B(t) = a} .

Then
{
Ta : a ≥ 0

}
is a Markov process with transition kernel given by the densities

p(a, t, s) =
a√

2π(s− t)3
exp

(
− a2

2(s− t)

)
1 {s > t} for a > 0.

Proof. Fix a ≥ b ≥ 0 and observe that for all t ≥ 0,

{Ta − Tb = t} =
{
B
(
Tb + s

)
−B

(
Tb
)
< a− b for all s < t

}
∩
{
B
(
Tb + t

)
−B

(
Tb
)
= b− a

}
.

The strong Markov property shows that this event is independent of F+
(
Tb
)
, and thus of

{
Tc : c ≤ b

}
.

Therefore,
{
Ta : a ≥ 0

}
is Markovian with respect to its natural �ltration.

To compute the transition density, observe that the strong Markov property implies that Ta−b =d Ta − Tb

so Theorem 16.11 gives

P
(
Ta − Tb ≤ t

)
= P

(
Ta−b ≤ t

)
= P

(
max
0≤s≤t

B(s) ≥ a− b
)

= P
(
|B(t)| ≥ a− b

)
=

2√
2πt

∫ ∞

a−b

e−
x2

2t dx =

∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds

where the �nal equality used the substitution x = (a− b)
√

t
s . □

The process in Theorem 16.14 is called a stable subordinator of index 1
2 .

A subordinator is a real-valued nondecreasing Lévy process - that is, a process with stationary independent

increments which is continuous in probability: for all t ≥ 0, ε > 0, limh→0 P (|Xt+h −Xt| > ε) = 0.

It is stable with index α if X(0) = 0 and the scaling relation t−
1
αX(t) =d X(1) holds for all t > 0.

Thus, for example, standard Brownian motion is stable with index 2, but is not a subordinator.

Conversely, the Poisson process is a subordinator, but is not stable.

The process {Ta : a ≥ 0} is nondecreasing and continuous in probability by continuity of Brownian paths.

It has stationary independent increments since the transition densities are shift invariant in the sense that

p(a, t, s) = p(a, 0, s− t) for all a, s, t ≥ 0.

The self-similarity is a consequence of Brownian scaling:

Ta = inf {t ≥ 0 : Bt = a} = a2 inf {t ≥ 0 : Ba2t = a}

= a2 inf {t ≥ 0 : aBt = a} = a2T1.
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17. Martingale Properties

In the previous section, we were able to infer several interesting facts about Brownian motion and related

processes by appealing to the Markov property.

We will now explore Brownian motion as a (continuous time) martingale and use the opportunity to introduce

some standard concepts in the study of stochastic processes.

De�nition. A real-valued process {X(t) : t ≥ 0} is said to be a martingale with respect to a �ltration

{F(t) : t ≥ 0} if it is adapted, integrable, and satis�es E [X(t) |F(s) ] = X(s) for all 0 ≤ s ≤ t.

It is a sub/super-martingale if the equality is replaced with an appropriate inequality.

Example 17.1. Brownian motion is clearly a martingale since for all 0 ≤ s ≤ t,

E
[
B(t)

∣∣F+(s)
]
= E

[
(B(t)−B(s)) +B(s)

∣∣F+(s)
]

= E [B(t)−B(s)] +B(s) = B(s).

Before elaborating on the martingale property of Brownian motion, we will take a moment to extend some

familiar results to continuous time.

The basic strategy is to apply discrete time analogues to approximating sequences.

In order to present these results in greater generality, we need a few more de�nitions.

We say that a �ltered probability space
(
Ω,F , {Ft}t≥0 , P

)
satis�es the usual conditions if

(1) F is complete with respect to P � that is, if A ∈ F has P (A) = 0 and B ⊆ A, then B ∈ F .

(2) F0 contains all P -null sets.

(3) {Ft}t≥0 is right-continuous.

Given a probability space (Ω,Fo, P o), its completion is the space (Ω,F , P ) where F = σ (Fo ∪N ) with

N = {E ⊆ Ω : E ⊆ F for some F ∈ Fo with P o(F ) = 0}, and P (E) = inf {P o(F ) : E ⊆ F ∈ F}.

The usual augmentation
(
Ω,F , {Ft}t≥0 , P

)
of the �ltered space

(
Ω,Fo, {Fo

t }t≥0 , P
o
)
is formed by taking

(Ω,F , P ) to be the completion of (Ω,Fo, P o) and setting Ft =
⋂

s>t σ (Fo
s ∪N ).

All of our results in the previous section carry over without change to the augmented �ltration for Brownian

motion since adding null sets doesn't make any di�erence in the arguments.

The reason that we are now concerned with completeness is that many processes of interest do not enjoy the

continuity properties of Brownian motion, but we still want to be able to argue by discrete approximation.

This approach generally works for càdlàg (right-continuous with left limits) processes, and we will see that

under the usual conditions, martingales have càdlàg versions.

(We say that {Yt : t ≥ 0} is a version of {Xt : t ≥ 0} if for all t ≥ 0, P (Xt ̸= Yt) = 0. This is a strictly

weaker notion than being indistinguishable: P (Xt ̸= Yt for some t ≥ 0) = 0, though the two coincide when

the processes are right-continuous.)
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Theorem 17.1 (Doob's inequalities). If Xt is a martingale or nonnegative submartingale with càdlàg sample

paths, then

(1)

P

(
sup
s≤t

|Xs| ≥ λ

)
≤ E |Xt|

λ
for all λ > 0.

(2)

E

[
sup
s≤t

|Xt|p
]
≤
(

p

p− 1

)p

E [|Xt|p] for all 1 < p <∞.

Proof. Since the absolue value of a martingale is a nonnegative submartingale, it su�ces to consider the case

where Xt ≥ 0 is a submartingale.

Let Dn(t) =

{
kt

2n
: 0 ≤ k ≤ 2n

}
, and set Y

(n)
k = X kt

2n
, G(n)

k = F kt
2n
.

Then Y
(n)
k is clearly a discrete time submartingale with respect to G(n)

k .

Setting An(t) =
{
sups∈Dn(t) |Xs| > λ

}
, it follows from Theorem 4.2 that

P (An(t)) = P

(
max

0≤k≤2n
Y

(n)
k > λ

)
≤
E
∣∣∣Y (n)

2n

∣∣∣
λ

=
E |Xt|
λ

.

Since A1(t) ⊆ A2(t) ⊆ · · · and Xt is right-continuous, we have
⋃

nAn(t) =
{
sups≤t |Xs| > λ

}
and thus

P

(
sup
s≤t

|Xs| > λ

)
= lim

n→∞
P (An(t)) ≤

E |Xt|
λ

.

Plugging in λ− ε for λ and taking ε↘ 0 gives (1).

Similarly, Theorem 4.4 gives

E

[
sup

0≤k≤2n

∣∣∣Y (n)
k

∣∣∣p] ≤ ( p

p− 1

)p

E
[∣∣∣Y (n)

2n

∣∣∣p] = ( p

p− 1

)p

E [|Xt|p] .

Right-continuity implies that sup0≤k≤2n

∣∣∣Y (n)
k

∣∣∣p ↗ sups≤t |Xs|p, and (2) follows from Fatou's lemma. □

In a similar vein, we can prove continuous time optional stopping theorems, such as

Theorem 17.2. Suppose that {X(t) : t ≥ 0} is a martingale with càdlàg sample paths and S ≤ T are stopping

times. If there exists some integrable random variable Y such that |X(t ∧ T )| ≤ Y a.s. for all t ≥ 0, then

E [X(T ) |F(S) ] = X(S) a.s.

Proof. FixN ∈ N and de�ne a discrete time martingale Yn = X
(
T ∧ n

2N

)
and stopping times S′ =

⌊
2NS

⌋
+1,

T ′ =
⌊
2NT

⌋
+ 1. The referent �ltration is taken to be Gn = F

(
n
2N

)
.

{Yn : n ∈ N} is clearly uniformly integrable, so, writing SN = 2−N
(⌊
2NS

⌋
+ 1
)
, Theorem 5.2 gives

E [X(T ) |F (SN ) ] = E [YT ′ |GS′ ] = YS′ = X (T ∧ SN ) .

Since SN ↘ S as N ↗ ∞, dominated convergence and right-continuity show that for any A ∈ F(S),∫
A

X(T )dP = lim
N→∞

∫
A

E [X(T ) |F(SN ) ] dP

= lim
N→∞

∫
A

X (T ∧ SN ) dP =

∫
A

lim
N→∞

X (T ∧ SN ) dP =

∫
A

X(S)dP. □
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To wrap up our general discussion of martingales, we prove a continuous time martingale convergence theorem

and show that there is no loss in assuming càdlàg paths as long as the usual conditions are satis�ed.

We will use the notation Dn =
{

k
2n : k ∈ N0

}
, D =

⋃
n∈N0

Dn.

Theorem 17.3. Suppose that {Xt : t ≥ 0} is a submartingale with respect to some �ltration {Ft : t ≥ 0}
and that supt≥0E |Xt| <∞. Then

(1) lim
t→∞

Xt exists in R almost surely.

(2) With probability one, Xt has �nite left and right limits along D.

Proof. Theorem 17.1 ensures that for all λ > 0,

P

(
sup

t∈Dn∩[0,n]

Xt ≥ λ

)
≤ E |Xn|

λ
,

so the monotone convergence theorem gives

P

(
sup
t∈D

Xt ≥ λ

)
≤ sup

t≥0

E |Xt|
λ

.

Since λ > 0 is arbitrary, we see that {|Xt| : t ∈ D} is a.s. a bounded set.

Accordingly, the only way for (1) or (2) to fail is if there is some pair of rationals a < b such that the number

of upcrossings of [a, b] by {Xt : t ∈ D} is in�nite.

But Lemma 2.1 shows that if Un is the number of upcrossings by {Xt : t ∈ Dn ∩ [0, n]}, then

E [Un] ≤
E |Xn|
b− a

.

Taking n→ ∞, Fatou's lemma shows that the number of upcrossings by {Xt : t ∈ D} has �nite expectation

and thus is �nite with full probability. The result follows since there are countably many pairs of rationals. □

The reason for taking the seemingly circuitous route through the upcrossing inequality was to establish the

second claim in Theorem 17.3. The utility of this fact lies in

Theorem 17.4. Let {Ft} be a �ltration satisfying the usual conditions. If Xt is a martingale with respect

to {Ft}, then there is a version of {Xt : t ≥ 0} which is a martingale and has càdlàg paths.

Proof. Jensen's inequality implies that |Xt| is a submartingale, so E |Xt| ≤ E |XN | <∞ for all t ≤ N .

Accordingly, Theorem 17.3 shows that for any N ∈ N, Xt∧N almost surely has left and right limits along D.

Since N is arbitrary, we must have that Xt has left and right limits along D a.s.

Now de�ne

Yt = lim
u∈D,u→t+

Xu.

Then Yt has càdlàg paths by construction.

Also, since {Ft} is right-continuous and {Xt} is adapted, Yt is Ft-measurable for all t ≥ 0.

We now observe that for �xed N ∈ N, {Xt : 0 ≤ t ≤ N} is uniformly integrable:

Let ε > 0. Since XN is integrable, there is a δ > 0 such that P (A) < δ implies E [XN ;A] < ε. (See the proof

of Theorem 4.6 for details.)
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When M > E|XN |
δ , we have

P (|Xt| ≥M) ≤ E |Xt|
M

≤ E |XN |
M

< δ

for all 0 ≤ t ≤ N because |Xt| is a submartingale.

Since {|Xt| ≥M} ∈ Ft, the submartingale property implies

E [|Xt| ; |Xt| ≥M ] ≤ E [|XN | ; |Xt| ≥M ] < ε

for all t ∈ [0, N ], hence {Xt : 0 ≤ t ≤ N} is u.i.

Now let t < N . If E ∈ Ft, then the Vitali convergence theorem gives

E [Yt;E] = E

[
lim

u∈D,u→t+
Xu;E

]
= lim

u∈D,u→t+
E [Xu;E] = E [Xt;E] .

Since Yt ∈ Ft, this proves that Xt = Yt a.s.

Because N is arbitrary, we conclude that {Yt : t ≥ 0} is a version of {Xt : t ≥ 0}, and we are done since this

implies that Yt is a martingale: For s ≤ t, E [Yt |Fs ] = E [Xt |Fs ] = Xs = Ys almost surely. □

Now that we are comfortable with martingales in continuous time and have the foregoing results at our

disposal, we can return to Brownian motion. We begin with

Theorem 17.5 (Wald's lemma). Let {B(t) : t ≥ 0} be a standard Brownian motion and let T be a stopping

time with E[T ] <∞. Then E[B(T )] = 0.

Proof. De�ne

Mk = max
0≤t≤1

|B(t+ k)−B(k)| , M =

⌊T⌋∑
k=0

Mk.

Then independent increments and the fact that Mk is independent of {T ≥ k} = {T < k}C ∈ F+(k) yield

E[M ] = E

⌊T⌋∑
k=0

Mk

 =

∞∑
k=0

E [Mk1 {T ≥ k}] =
∞∑
k=0

E[Mk]P (T ≥ k)

= E[M0]

(
1 +

∞∑
k=1

P (T ≥ k)

)
≤ E [M0]

(
1 +

∫ ∞

0

P (T ≥ t) dt

)
= E [M0] (1 + E [T ]) .

The re�ection principle shows that

E [M0(t)] =

∫ ∞

0

P

(
max
0≤t≤1

|B(t)| > x

)
dx ≤ 1 +

∫ ∞

1

2P

(
max
0≤t≤1

B(t) > x

)
dx

= 1 + 2

∫ ∞

1

P (|B(1)| > x) dx = 1 + 2

∫ ∞

1

(
2

∫ ∞

x

1√
2π
e−

s2

2 ds

)
dx

≤ 1 +
4√
2π

∫ ∞

1

∫ ∞

x

s

x
e−

s2

2 dsdx = 1 +
4√
2π

∫ ∞

1

x−1e−
x2

2 dx <∞,

so E[M ] <∞.

Since supt≥0 |B(t ∧ T )| ≤M ∈ L1, Theorem 17.2 gives

E [B(T )] = E
[
E
[
B(T )

∣∣F+(0)
]]

= E [B(0)] = 0. □
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In order to compute the second moment of B(T ), we need the following results, the second of which gives

another concrete example of a continuous martingale.

Lemma 17.1. Let S ≤ T be stopping times with E[T ] <∞. Then

E
[
B(T )2

]
= E

[
B(S)2

]
+ E

[
(B(T )−B(S))

2
]
.

Proof.

E
[
B(T )2

]
= E

[
E
[
(B(T )−B(S))

2
+ 2B(T )B(S)−B(S)2

∣∣F+(S)
]]

= E
[
E
[
(B(T )−B(S))

2
+ 2B(S) (B(T )−B(S)) +B(S)2

∣∣F+(S)
]]

= E
[
(B(T )−B(S))

2
]
+ 2E

[
B(S)E

[
B(T )−B(S)

∣∣F+(S)
]]

+ E
[
B(S)2

]
.

Since E[T ] < ∞ implies E [T − S |F(S) ] < ∞ a.s., the strong Markov property at time S in conjunction

with Wald's lemma shows that E [B(T )−B(S) |F+(S) ] = 0 a.s. □

Proposition 17.1. Let {B(t) : t ≥ 0} be a Brownian motion. Then the process
{
B(t)2 − t : t ≥ 0

}
is a

martingale.

Proof. B(t)2 − t is clearly integrable and F+(t)-measurable for all t ≥ 0, and for any 0 ≤ s ≤ t,

E
[
B(t)2 − t

∣∣F+(s)
]
= E

[
(B(t)−B(s))

2
+ 2B(t)B(s)−B(s)2 − t

∣∣F+(s)
]

= E
[
(B(t)−B(s))

2
]
+ 2B(s)

[
B(t)

∣∣F+(s)
]
−B(s)2 − t

= (t− s) + 2B(s)2 −B(s)2 − t = B(s)2 − s. □

We can now prove Wald's second lemma.

Theorem 17.6. If T is a stopping time for standard Brownian motion and E[T ] <∞, then

E
[
B(T )2

]
= E[T ].

Proof. Consider the martingale
{
B(t)2 − t : t ≥ 0

}
and de�ne stopping times Tn = inf {t ≥ 0 : |B(t)| = n}.

Then the process
{
B (t ∧ T ∧ Tn)2 − (t ∧ T ∧ Tn) : t ≥ 0

}
is uniformly dominated by the integrable random

variable n2 + T , so

Theorem 17.2 with S = 0 implies E
[
B (T ∧ Tn)2 − (T ∧ Tn)

]
= 0, or E

[
B (T ∧ Tn)2

]
= E [T ∧ Tn].

Applying Lemma 17.1 to T ∧ Tn ≤ T shows that E
[
B(T )2

]
≥ E

[
B (T ∧ Tn)2

]
, hence

E
[
B(T )2

]
≥ lim

n→∞
E
[
B (T ∧ Tn)2

]
= lim

n→∞
E [T ∧ Tn] = E[T ]

by monotone convergence.

On the other hand, Fatou's lemma gives

E
[
B(T )2

]
= E

[
lim inf
n→∞

B (T ∧ Tn)2
]
≤ lim inf

n→∞
E
[
B (T ∧ Tn)2

]
= lim inf

n→∞
E [T ∧ Tn] = E[T ],

and the proof is complete. □
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A typical application of Wald's lemmas is computing exit times and exit probabilities for Brownian motion.

For example, we have the following �gambler's ruin� type result.

Theorem 17.7. Let {B(t) : t ≥ 0} be a standard Brownian motion, and let TA = inf {t ≥ 0 : B(t) ∈ A}
denote the hitting time of a Borel set A. If a < 0 < b, then T = T{a,b} satis�es

(1)

P (B(T ) = a) =
b

|a|+ b
and P (B(T ) = b) =

|a|
|a|+ b

.

(2)

E [T ] = |ab| .

Proof. |B(T ∧ t)| ≤ |a| ∨ b, so it follows from Theorem 17.2 that

0 = E [B(0)] = E [B(T )] = aP (B(T ) = a) + bP (B(T ) = b)

= aP (B(T ) = a) + b [1− P (B(T ) = a)]

= b+ (a− b)P (B(T ) = a)

= b− (b+ |a|)P (B(T ) = a) ,

which gives (1).

To see that T has �nite mean, observe that

E[T ] =

∫ ∞

0

P (T > t)dt ≤
∫ ∞

0

P (T > ⌊t⌋) dt =
∞∑
k=0

P (T > k)

≤ 1 +

∞∑
k=1

P

 k⋂
j=1

{B(t) ∈ (a, b) for all j − 1 ≤ t < j}


≤ 1 +

∞∑
k=1

P

(
max
0≤t≤1

|B(t)| ≤ b− a

)k

<∞.

Therefore, Wald's second lemma implies

E [T ] = E
[
B(T )2

]
= a2P (T = a) + b2P (T = b)

=
|a|2 b
|a|+ b

+
|a| b2

|a|+ b
=

|a| b (|a|+ b)

|a|+ b
= |ab| . □

Proposition 17.1 showed that the process
{
B(t)2 − t : t ≥ 0

}
is a martingale with respect to F+(t). Another

important example is given by geometric Brownian motion.

Proposition 17.2. Let {B(t) : t ≥ 0} be a standard Brownian motion.

Then the process
{
exp

(
σB(t)− σ2t

2

)
: t ≥ 0

}
is a martingale for all σ > 0.
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Proof. For 0 ≤ s ≤ t,

E

[
exp

(
σB(t)− σ2t

2

)∣∣∣∣F+(s)

]
= exp (σB(s))E

[
exp (σ (B(t)−B(s)))| F+(s)

]
exp

(
−σ

2t

2

)
.

Since σ (B(t)−B(s)) ∼ N
(
0, σ2(t− s)

)
is independent of F+(s), the middle term is∫ ∞

−∞
ex

1√
2πσ2(t− s)

e
− x2

2σ2(t−s) dx =
1√

2πσ2(t− s)

∫ ∞

−∞
exp

(
−x

2 − 2σ2(t− s)x

2σ2(t− s)

)
dx

=
1√

2πσ2(t− s)

∫ ∞

−∞
exp

(
−
(
x− σ2(t− s)

)2 − σ4(t− s)2

2σ2(t− s)

)
dx = exp

(
σ2(t− s)

2

)
,

thus

E

[
exp

(
σB(t)− σ2t

2

)∣∣∣∣F+(s)

]
= exp

(
σB(s) +

σ2(t− s)

2
− σ2t

2

)
= exp

(
σB(s)− σ2s

2

)
. □

The derived martingales in Propositions 17.1 and 17.2 are of the form fk(B(t), t) with f1(x, t) = x2 − t and

f2(x, t) = exp
(
σx− σ2t

2

)
. Note that both f1 and f2 solve the backward equation

∂u

∂t
= −1

2

∂2u

∂x2
.

The following formal derivation show that under relatively mild conditions, if f solves the backward equation,

then {f (B(t), t) : t ≥ 0} is a martingale.

First observe that the transition density pt(x, y) =
1√
2πt

exp
(
− (y−x)2

2t

)
satis�es the forward equation

∂u

∂t
=

1

2

∂2u

∂y2
. (This is the heat equation with di�usivity 1

2 .)

Indeed,
∂

∂t

[
1√
2πt

exp

(
− (y − x)2

2t

)]
=

1√
2πt

exp

(
− (y − x)2

2t

)(
− 1

2t
+

(y − x)2

2t2

)
and

∂2

∂y2

[
1√
2πt

exp

(
− (y − x)2

2t

)]
=

1√
2πt

∂

∂y

[
−y − x

t
exp

(
− (y − x)2

2t

)]
=

1√
2πt

exp

(
− (y − x)2

2t

)(
−1

t
+

(y − x)2

t2

)
.

If one can justify di�erentiating under the integral, then

∂

∂t
Ex [f (B(t), t)] =

∫
∂

∂t
[f(y, t)pt(x, y)] dy

=

∫ (
∂

∂t
f(y, t)

)
pt(x, y)dy +

∫
f(y, t)

(
∂

∂t
pt(x, y)

)
dy.

If the following integration by parts steps are valid, then the latter integral is∫
f(y, t)

(
∂

∂t
pt(x, y)

)
dy =

1

2

∫
f(y, t)

(
∂2

∂y2
pt(x, y)

)
dy

= −1

2

∫ (
∂

∂y
f(y, t)

)(
∂

∂y
pt(x, y)

)
dy

=
1

2

∫ (
∂2

∂y2
f(y, t)

)
pt(x, y)dy.
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Putting these equations together gives

∂

∂t
Ex [f (B(t), t)] =

∫ (
∂

∂t
f(y, t)

)
pt(x, y)dy +

∫
f(y, t)

(
∂

∂t
pt(x, y)

)
dy

=

∫ (
∂

∂t
f(y, t)

)
pt(x, y)dy +

1

2

∫ (
∂2

∂y2
f(y, t)

)
pt(x, y)dy

=

∫ (
∂

∂t
f(y, t) +

1

2

∂2

∂y2
f(y, t)

)
pt(x, y)dy = 0

since f satis�es the backward equation.

Finally, the Markov property shows that

E
[
f (B(t), t)

∣∣F+(s)
]
= EB(s) [f (B(t), t)− f (B(s), s)] + f (B(s), s) = f (B(s), s)

because Ex [f (B(t), t)] is constant in t.

An important example of the above heuristic is f(x, t) = g(x) with ∆g = 0.

That is, under mild integrability assumptions, harmonic functions of Brownian motion are martingales.
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18. Donsker's Theorem

Let X1, X2, . . . be i.i.d. with E[X1] = 0 and Var (X1) = 1, and set Sn =
∑n

i=1Xi.

We can extend the random walk Sn from N0 to [0,∞) by linear interpolation: S(t) = S⌊t⌋+(t− ⌊t⌋)
(
S⌊t+1⌋ − S⌊t⌋

)
.

Scaling di�usively gives a sequence of continuous functions Sn(t) = S(nt)/
√
n.

The CLT implies that the law of Sn(1) converges weakly to N (0, 1) = L (B(1)) where {B(t)}t∈[0,1] is a

standard Brownian motion.

We will prove the stronger statement that the process {Sn(t)}t∈[0,1] converges in distribution to {B(t)}t∈[0,1].

Thus we can think of Brownian motion as the scaling limit of random walk.

Here we are viewing the processes as random variables taking values in C[0, 1] (the space of continuous

functions from [0, 1] to R endowed with the uniform metric), so weak convergence means that for every

bounded and continuous functional Λ : C[0, 1] → R, limn→∞E [Λ(Sn)] = E [Λ(B)].

One approach to proving this functional CLT begins by de�ning
{
S̃n(t) : t ≥ 0

}
by S̃n(t) =

1√
n

∑⌊nt⌋
k=1 Xk.

Since Cov
(
S̃n(s), S̃n(t)

)
= ⌊ns⌋∧⌊nt⌋

n → s ∧ t for all s, t ≥ 0, the multivariate CLT shows that for any

t1, . . . , tm ≥ 0,
(
S̃n(t1), . . . , S̃n(tm)

)
⇒ (B(t1), . . . , B(tm)) as n→ ∞.

Linear interpolation yields the continuous process Sn(t) = S̃n(t) +
(

nt−⌊nt⌋√
n

)
X⌊nt⌋+1, and we have that

P
(∣∣∣Sn(t)− S̃n(t)

∣∣∣ > ε
)
= P

(∣∣∣∣(nt− ⌊nt⌋√
n

)
X⌊nt⌋+1

∣∣∣∣2 > ε2

)

≤ (nt− ⌊nt⌋)2

nε2
E
[
X2

⌊nt⌋+1

]
≤ 1

nε2
→ 0,

so Slutsky's theorem shows that the �nite dimensional distributions of {Sn(t)}t≥0 converge weakly to those

of Brownian motion.

One can then deduce weak convergence of the processes by demonstrating tightness.

Making this argument rigorous involves more analysis than probability, so we'll pursue an alternative ap-

proach based on Skorokhod embedding.

Theorem 18.1 (Skorokhod's embedding theorem). If X is a random variable with mean zero and �nite

variance, then there is a stopping time T for {F+(t)}t≥0 such that B(T ) =d X and E [T ] = E
[
X2
]
.

Note that if X is supported on {a, b} with a < 0 < b, then the mean zero condition implies that

P (X = a) =
b

b− a
, P (X = b) =

−a
b− a

.

Letting T = Ta,b = inf {t : B(t) /∈ (a, b)}, Theorem 17.7 shows that B(T ) =d X and E [T ] = −ab = E
[
X2
]
.

We can use this observation to prove Theorem 18.1 by considering an appropriate martingale.

De�nition. A martingale {Xn}∞n=0 is binary splitting if whenever x0, . . . , xn ∈ R is such that the event

A (x0, . . . , xn) = {X0 = x0, . . . , Xn = xn} has positive probability, then conditional on A (x0, . . . , xn), Xn+1

is supported on at most two values.
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Lemma 18.1. If X is a random variable on (Ω,F , P ) with E
[
X2
]
< ∞, then there is a binary splitting

martingale {Xn} with Xn → X a.s. and in L2.

Proof. Set G0 = {∅,Ω}, X0 = E[X], and ξ0 =

1, X ≥ X0

−1, X < X0

. De�ne Gn, Xn, ξn recursively by Gn =

σ (ξ0, . . . , ξn−1), Xn = E [X |Gn ], ξn =

1, X ≥ Xn

−1, X < Xn

.

Then Gn is generated by a partition Pn of Ω into 2n events, each of which can be expressed as A(x0, . . . , xn).

As each element in Pn is a union of two events in Pn+1, we see that {Xn} is binary splitting.

Also, Lévy's Forward Theorem gives Xn → E [X |G∞ ] a.s. where G∞ = σ (
⋃

n Gn).

Since X is square-integrable and E
[
X2

n

]
= E

[
E [X |Gn ]

2
]
≤ E

[
E
[
X2 |Gn

]]
= E

[
X2
]
for all n, it follows

from Theorem 4.5 that Xn converges to X∞ = E [X |G∞ ] in L2 as well.

We'll be done upon showing that X∞ = X a.s. To see that this is so, we observe that

lim
n→∞

ξn (X −Xn) = |X −X∞| a.s.

Indeed, if X(ω) = X∞(ω), then this is clearly true. If X(ω) > X∞(ω), then X(ω) ≥ Xn(ω) for all

su�ciently large n, so ξn(ω) = 1 eventually and the equality holds. Similarly, if X(ω) < X∞(ω), then

ξn(ω) = −1 eventually.

Since ξn ∈ Gn, we see that E [ξn (X −Xn)] = E [ξnE [X −Xn |Gn ]] = 0 for all n.

As |ξn (X −Xn)| ≤ |Xn|+ |X| ≤ |X∞|+ 1 + |X| for large n, the DCT implies E |X −X∞| = 0. □

Skorokhod's embedding theorem is a simple consequence of the above observations.

Proof of Theorem 18.1. Let {Xn} be a binary splitting martingale which converges to X a.s. and in L2.

We know that if X is supported on {a, b} for a < 0 < b, then Ta,b = inf {t ≥ 0 : B(t) /∈ (a, b)} gives the

requisite stopping time.

Since, conditional on A(x0, . . . , xn−1), Xn is supported on two such values, we can �nd T0 ≤ T1 ≤ · · · such
that B(Tn) =d Xn and E [Tn] = E

[
X2

n

]
.

As Tn is increasing, there is some stopping time T with Tn → T a.s. and

E [T ] = lim
n→∞

E [Tn] = lim
n→∞

E
[
X2

n

]
= E

[
X2
]

by dominated convergence.

Finally, B(Tn) converges in distribution toX by construction, andB(Tn) converges a.s. toB(T ) by continuity

of Brownian paths, so we have B(T ) =d X as required. □

Now that we have Skorokhod embedding at our disposal, we are ready to start proving

Theorem 18.2 (Donsker's invariance principle). On the space C[0, 1], the sequence {Sn} converges in

distribution to a standard Brownian motion.

The basic idea of the proof is to construct the random variables X1, X2, . . . on the same probability space

as the Brownian motion in such a way that {Sn} is close to a scaling of the Brownian motion with high

probability.
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Lemma 18.2. Suppose that {B(t) : t ≥ 0} is a standard Brownian motion. Then for any random variable

X with mean zero and variance one, there exists a sequence of stopping times 0 = T0 ≤ T1 ≤ T2 ≤ · · · with

respect to {F+(t)} such that

(1) The sequence of random variables {B(Tn)}∞n=0 has the distribution of the random walk whose incre-

ments are distributed as X.

(2) For all ε > 0, the sequence of functions {Sn}∞n=0 constructed from this random walk satis�es

lim
n→∞

P

(
sup

0≤t≤1

∣∣∣∣B(nt)√
n

− Sn(t)

∣∣∣∣ > ε

)
= 0.

Proof. By Skorokhod embedding, we can �nd a stopping time T1 for {F+(t)} with E [T1] = E
[
X2
]
= 1 and

B(T1) =d X.

The strong Markov property shows that {B(T1 + t)−B(T1) : t ≥ 0} is a standard Brownian motion which

is independent of F+(T1) and thus of (T1, B(T1)).

Accordingly, we can �nd T ′
2 with E[T ′

2] = 1 and B(T ′
2) =d X. Setting T2 = T1 + T ′

2, we see that E [T2] =

E [T1] +E [T ′
2] = 2 and B(T2) = (B(T1 + T ′

2)−B(T1)) +B(T1), which is distributed as the second step in a

random walk with increment distribution L (X).

Continuing inductively gives a sequence T0 ≤ T1 ≤ T2 ≤ · · · where E [Tn] = n and Sn = B (Tn) is the

embedded random walk.

To prove the second claim, write Wn(t) =
B(nt)√

n
and de�ne An = {|Wn(t)− Sn(t)| > ε for some t ∈ [0, 1]}.

We must show that P (An) → 0.

Let k = k(t) be the unique integer with k−1
n ≤ t < k

n . Since S
n is linear on

[
k−1
n , kn

)
, we have

An ⊆
{∣∣∣∣Wn(t)−

Sk√
n

∣∣∣∣ > ε for some t ∈ [0, 1]

}⋃{∣∣∣∣Wn(t)−
Sk−1√
n

∣∣∣∣ > ε for some t ∈ [0, 1]

}
.

Using Sk = B(Tk) =
√
nWn (Tk/n), we see that An is contained in

A∗
n = {|Wn(t)−Wn (Tk/n)| > ε for some t ∈ [0, 1]}

⋃
{|Wn(t)−Wn (Tk/n)| > ε for some t ∈ [0, 1]} .

Now for any �xed 0 < δ < 1, A∗
n is contained in

{|Wn(t)−Wn (s)| > ε for some s, t ∈ [0, 2] with |s− t| < δ}
⋃{∣∣∣∣Tkn − t

∣∣∣∣ ∨ ∣∣∣∣Tk−1

n
− t

∣∣∣∣ ≥ δ for some t ∈ [0, 1]

}
.

Since Wn(t) = B(nt)√
n

=d B(t), the probability of the �rst of these events is independent of n, and sample

path continuity ensures that we can choose δ small enough to make this probability as small as we wish.

Thus we will be done upon showing that for any 0 < δ < 1,

P

(∣∣∣∣Tkn − t

∣∣∣∣ ∨ ∣∣∣∣Tk−1

n
− t

∣∣∣∣ ≥ δ for some t ∈ [0, 1]

)
→ 0.

To prove this, we note that the strong law implies

lim
n→∞

Tn
n

= lim
n→∞

1

n

n∑
k=1

(Tk − Tk−1) = 1 a.s.

because the random variables T ′
k = Tk − Tk−1 are i.i.d. with mean 1.
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Now observe that any sequence of reals with an

n → 1 must satisfy sup
0≤k≤n

|ak−k|
n → 0.

* Given ε > 0, we can choose N so that
∣∣an

n − 1
∣∣ < ε for n ≥ N , and then choose M > N so that

max0≤k≤N

∣∣ak−k
n

∣∣ < ε for n ≥M . Thus when n ≥M , we have

max
0≤k≤n

∣∣∣∣ak − k

n

∣∣∣∣ = max
0≤k≤N

∣∣∣∣ak − k

n

∣∣∣∣ ∨ max
N<k≤n

∣∣∣∣ak − k

n

∣∣∣∣ < ε ∨ max
N<k≤n

k

n

∣∣∣ak
k

− 1
∣∣∣ < ε.

Accordingly, we see that

lim
n→∞

P

(
sup

0≤k≤n

∣∣∣∣Tk − k

n

∣∣∣∣ ≥ δ

)
= 0.

Because k(t)−1
n ≤ t < k(t)

n , whenever n > 2/δ, we have

P

(∣∣∣∣Tk(t)n
− t

∣∣∣∣ ∨ ∣∣∣∣Tk(t)−1

n
− t

∣∣∣∣ ≥ δ for some t ∈ [0, 1]

)
≤ P

(
sup

1≤k≤n

∣∣∣∣Tk − (k − 1)

n

∣∣∣∣ ∨ ∣∣∣∣Tk−1 − k

n

∣∣∣∣ ≥ δ

)
≤ P

(
sup

1≤k≤n

∣∣∣∣Tk − k

n

∣∣∣∣ ≥ δ

2

)
+ P

(
sup

1≤k≤n

∣∣∣∣Tk−1 − (k − 1)

n

∣∣∣∣ ≥ δ

2

)
→ 0. □

We are now able to give the

Proof of Theorem 18.2. Choose T0 ≤ T1 ≤ · · · as in Lemma 18.2 and note that Proposition 14.3 shows that

the random functions Wn ∈ C[0, 1] given by Wn(t) =
B(nt)√

n
are standard Brownian motions.

For any closed set K ⊆ C[0, 1], if we let denote its ε-neighborhood by

K[ε] = {f ∈ C[0, 1] : ∥f − g∥ ≤ ε for some g ∈ K} ,

then it is clear that

P (Sn ∈ K) ≤ P (Wn ∈ K[ε]) + P (∥Sn −Wn∥ > ε)

= P (B ∈ K[ε]) + P (∥Sn −Wn∥ > ε) → P (B ∈ K[ε])

where B is a standard Brownian motion.

Since K is closed,

lim
ε→0

P (B ∈ K[ε]) = P

(
B ∈

⋂
n∈N

K

[
1

n

])
= P (B ∈ K).

Therefore, lim supn→∞ P (Sn ∈ K) ≤ P (B ∈ K), showing that Sn ⇒ B by the Portmanteau theorem. □

One of the main uses of Donsker's theorem and the Skorokhod embedding theorem is to translate results

about random walks into results about Brownian motions and conversely. Standard examples of this sort of

reasoning are given by the arcsine laws and the law of the iterated logarithm.

For instance, the law of the iterated logarithm is easier to prove in the continuous setting of Brownian

motion, and one derives the corresponding statement for random walk by embedding Sn in B.
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Similarly, it is straightforward to prove the arcsine law for the last zero of Brownian motion, and then one

can invoke Donsker's theorem to get the analogous statement for random walk. Conversely, combinatorial

considerations make it relatively easy to prove an arcsine law for the time simple random walk spends above

the x-axis, and one can use Donsker to get the statement about positive times of Brownian motion.

Moreover, Donsker's theorem is an invariance principle, meaning that the statement does not depend on the

particulars of the increment distribution. Thus one can prove a result for simple random walk, use Donsker

to establish its analogue for Brownian motion, and then convert it back to a result about random walk with

arbitrary mean 0 variance 1 increments.

The following two examples are among the simplest illustrations of this line of reasoning.

Example 18.1. Let X1, X2, . . . be i.i.d. with E [X1] = 0 and E
[
X2

1

]
= 1, and set Sn =

∑n
k=1Xk.

De�ne Sn(t) = S(nt)/
√
n with S(t) = S⌊t⌋ + (t− ⌊t⌋)

(
S⌊t+1⌋ − S⌊t⌋

)
as before.

Let h : R → R be bounded and continuous, and de�ne Λh : C[0, 1] → R by Λh(f) = h (f(1)). Then

supf∈C[0,1] |Λh(f)| ≤ ∥h∥∞and if fn → f in C[0, 1], then Λh(fn) = h (fn(1)) → h (f(1)) = Λh(f), hence Λh

is a bounded, continuous functional.

It follows from Theorem 18.2 that

E

[
h

(
Sn√
n

)]
= E [h (Sn(1))] = E [Λh (S

n)] → E [Λh (B)] = E [h (B(1))] .

Since h ∈ Cb(R) was arbitrary and B(1) ∼ N (0, 1), we have just proved the CLT!

Example 18.2. In the setting of the preceding example, let Mn = max
0≤k≤n

Sk.

Suppose that h : R → R is bounded and continuous and de�ne Γh : C[0, 1] → R by Γh(f) = h
(
max
0≤x≤1

f(x)
)
.

As before, it is clear that Γh is continuous and bounded.

Since S(t) is the linear interpolation of Sn, we have

E [Γh (S
n)] = E

[
h

(
max
0≤x≤1

S(nx)√
n

)]
= E

[
h

(
max

0≤k≤n

Sk√
n

)]
.

Also, E [Γh (B)] = E

[
h
(
max
0≤t≤1

B(t)
)]

and max
0≤t≤1

B(t) =d |B(1)| by Theorem 16.11, so Donsker's theorem

implies

lim
n→∞

E

[
h

(
Mn√
n

)]
= lim

n→∞
E [Γh (S

n)] = E [Γh (B)] = E [h (|B(1)|)] .

Thus the de�nition of weak convergence in terms of distribution functions shows that

lim
n→∞

P
(
Mn > x

√
n
)
= P (|B(1)| > x) =

√
2

π

∫ ∞

x

e−
t2

2 dt.
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Homework 1

(1) Show that if X = Y on B ∈ G, then E[X |G ] = E[Y |G ] a.s. on B.

(2) Suppose X ≥ 0 and E[X] = ∞. Show that there is a unique Y ∈ G with 0 ≤ Y ≤ ∞ so that∫
A

XdP =

∫
A

Y dP for all A ∈ G.

(Hint: Consider Xn = X ∧ n.)

(3) Prove the following conditional limit theorems.

(a) Fatou: If X1, X2, ... are nonnegative, then E [lim infnXn |G ] ≤ lim infnE [Xn |G ] a.s.

(b) DCT: If Xn → X a.s. and there is an integrable Z with |Xn| ≤ |Z|, then E[Xn |G ] → E[X |G ]

a.s.

(4) Give an example on Ω = {a, b, c} in which E [E[X |F1 ] |F2 ] ̸= E [E[X |F2 ] |F1 ].

(5) Suppose that G1 ⊆ G2 and E[X2] <∞. Show that

E
[
(X − E[X |G2 ])

2
]
≤ E

[
(X − E[X |G1 ])

2
]
.

(6) Suppose that E[X2] <∞, and de�ne Var (X |G ) = E[X2 |G ]− E[X |G ]2. Show that

Var(X) = E [Var (X |G )] +Var (E[X |G ]) .

(7) Show that if E[X |G ] = Y and E[X2] = E[Y 2] <∞, then X = Y a.s.
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(8) Suppose that X and Y have joint density f(x, y) > 0. Let

µ(y,A) =

∫
A
f(x, y)dx∫
f(x, y)dx

.

Show that µ(Y (ω), A) is a r.c.d. for X given σ(Y ).

(9) Suppose that X and Y take values in a nice space (S,S) and G = σ(Y ). Show that there is a function

p : S × S → [0, 1] such that

(i) For each A, p (Y (ω), A) is a version of P (X ∈ A |G ).

(ii) For a.e. ω, A→ p (Y (ω), A) is a probability measure on (S,S).
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Homework 2

(1) Let Xn be the position of simple random walk on Z at time n. That is, Xn =
∑n

k=1 ξk where

ξ1, ξ2, . . . are i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 . Show that Mn = X3

n − 3nXn is a martingale

w.r.t. Fn = σ(ξ1, ..., ξn).

(2) Suppose that ξ1, ξ2, ... are independent with E[ξi] = 0 and E[ξ2i ] = σ2
i < ∞, and set Sn =

∑n
i=1 ξi,

s2n =
∑n

i=1 σ
2
i . Show that S2

n − s2n is a martingale w.r.t. Fn = σ(ξ1, ..., ξn).

(3) Give an example of a (nonconstant) submartingale Xn such that X2
n is a supermartingale. Give an

example of a martingale Xn with Xn → −∞ a.s.

(4) Let (Ω,F , P ) be [0, 1) with the Borel sets and Lebesgue measure. Let Fn = σ
({[

j−1
2n ,

j
2n

)
: j = 1, ..., 2n

})
and de�ne Xn = 2n1[0,2−n). Show that {Xn} is a (nonnegative) martingale w.r.t. {Fn}. Does Xn

converge in L1?

(5) Suppose X1
n and X2

n are supermartingales with respect to Fn, and N is a stopping time with

X1
N ≥ X2

N . Show that Yn = X1
n1 {N > n}+X2

n1 {N ≤ n} is a supermartingale

(6) Let Xn be a martingale with X0 = 0 and E[X2
n] <∞. Show that for all λ ≥ 0

P

(
max

1≤m≤n
Xm ≥ λ

)
≤ E[X2

n]

E[X2
n] + λ2

.

(Hint: For any c ∈ R, (Xn + c)2 is a submartingale.)

(7) Let φ ≥ 0 be any function with φ(x)
x → ∞ as x → ∞. Show that E [φ (|Xi|)] ≤ C for all i ∈ I

implies {Xi}i∈I is uniformly integrable.

(8) Let ξ1, ξ2, ... be i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 , and set Xn =

n∑
k=1

ξk
k
. Show that Xn

converges to an integrable random variable X with probability one. In other words, the random

harmonic series is a.s. convergent.

(9) Suppose that X1, X2, ... are i.i.d. picks from a density f which is either equal to f0 or f1, both

of which are strictly positive on R. Show that under the null hypothesis f = f0, the test statistic

Λn =

n∏
i=1

f1(Xi)

f0(Xi)
converges a.s. as n→ ∞.

(10) Let Z1, Z2, ... be i.i.d. standard normals, and let θ be an independent random variable with �nite

mean. Set Yn = Zn + θ. In statistical terms, we have a sample from a normal population with

unknown mean. The distribution of θ is called the prior distribution and P (θ ∈ · |Y1, ..., Yn ) is

called the posterior distribution after n observations. Show that E[θ |Y1, ..., Yn ] → θ a.s. (The Bayes

estimate is consistent.)
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Homework 3

(1) Show that if Fn ↗ F∞ and Yn → Y in L1, then E[Yn |Fn ] → E[Y |F∞ ] in L1.

(2) Give an example of a submartingale {Xn} with supnE |Xn+1 −Xn| < ∞ and a stopping time N

with E[N ] <∞ such that {Xn∧N} is not uniformly integrable.

(3) Compute the expected number of tosses of a fair coin until the �rst occurrence of the patterns

THHTT , TTHHT , and THTHT , respectively.

(4) Let M = {fi : S → R}i∈I be a family of bounded functions which is closed under multiplication, and

let C = σ(fi : i ∈ I) be the smallest σ-algebra on S that makes all of the fi's measurable. Suppose

that H is a vector space of bounded R-valued functions on S satisfying

(i) M ⊆ H
(ii) 1 ∈ H
(iii) If h : S → R is bounded and there is a sequence of nonnegative functions in H that increase

pointwise to h, then h ∈ H.

Show that H contains all bounded functions which are measurable with respect to C.

(5) Suppose that S is a countable set and p : S × S → [0, 1] satis�es
∑

t∈S p(s, t) = 1 for all s ∈ S. A

random mapping representation of p is a function f : S × Λ → S, along with a Λ-valued random

variable Z, satisfying P (f(s, Z) = t) = p(s, t) for all s, t ∈ S.

(a) Give a random mapping representation for simple random walk on Z.

(b) Show that if (f, Z) is a random mapping representation for p, Z1, Z2, ... are i.i.d. with distribu-

tion L (Z), and X0 ∼ µ, then the sequence X0, X1, ... de�ned by Xk = f(Xk−1, Zk) for k ∈ N
is a Markov chain with transition function p and initial distribution µ.

(c) Show that every Markov chain on a countable state space has a random mapping representation.

(Hint: Let Z ∼ U(0, 1) and consider the array Fi,j =
∑j

k=1 p(si, sk) where p is the transition

function and {s1, s2, ...} is an enumeration of the state space.)
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(6) Give an example of a Markov chain Xn on a countable state space S and a measurable function g on

S such that g(Xn) is not a Markov chain. Can you give any conditions on {Xn} and g which ensure

that g(Xn) is a Markov chain?

(7) Let S = {0, 1} and p =

[
1− α α

β 1− β

]
. Use induction to show that

Pµ(Xn = 0) =
β

α+ β
+ (1− α− β)n

[
µ({0})− β

α+ β

]
.

(8) Consider the following process: Two animals are mated and among their direct descendants two

individuals of opposite sex are selected at random. These individuals are mated and the process

continues. Suppose that each individual can be of one of three genotypes, AA,Aa, aa, and suppose

that the type of o�spring is determined by selecting a letter from each parent. With these rules, the

pair of genotypes in the nth generation is a Markov chain with six states,

(AA,AA), (AA,Aa), (AA, aa), (Aa,Aa), (Aa, aa), (aa, aa).

Compute its transition probability.

(9) Let p be the transition matrix for simple random walk on the n-cycle (Xk = Xk−1 + ξk (modn)

where ξ1, ξ2, ... are i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 ) for n odd. Find the smallest value of r

so that ps(x, y) > 0 for all s ≥ r and all x, y ∈ Z/nZ. What if n is even?
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Homework 4

Unless otherwise noted, Xn is a Markov chain with countable state space S and transition probability p, and

τR = inf{n ≥ 0 : Xn ∈ R}, τy = τ{y}

TR = inf{n ≥ 1 : Xn ∈ R}, Ty = T{y}.

(1) Show that for any x ∈ S, k ∈ N,
n∑

m=0

Px(Xm = x) ≥
n+k∑
m=k

Px(Xm = x).

(2) Suppose that C ⊂ S with S \ C �nite. Show that if Px(τC <∞) > 0 for each x ∈ S \ C, then there

exist N <∞, ε > 0 such that Py(τC > kN) ≤ (1− ε)k for all y ∈ S, k ∈ N.

(3) Suppose that A,B ⊆ S with A ∩ B = ∅, S \ (A ∪ B) �nite, and Px(τA∪B < ∞) > 0 for all

x ∈ S \ (A ∪B). Let h(x) = Px(τA < τB).

(a) Show that

(⋆) h(x) =
∑
y

p(x, y)h(y) for x /∈ A ∪B.

(b) Show that if h is any bounded function satisfying (⋆), then h (Xn∧τA∪B
) is a martingale.

(c) Conclude that h(x) = Px(τA < τB) is the unique solution to (⋆) that is 1 on A and 0 on B.

(4) f is said to be superharmonic if f(x) ≥
∑

y p(x, y)f(y), or equivalently, if f(Xn) is a supermartingale.

Suppose p is irreducible. Prove that p is recurrent if and only if every nonnegative superharmonic

function is constant.

(5) Suppose that p is irreducible and has a stationary distribution π. De�ne the time reversal of Xn to

be the chain X̃n with transition probabilities

p̃(x, y) =
π(y)p(y, x)

π(x)
.

Show that π is stationary for X̃n, and for any x0, ..., xt ∈ S, we have

Pπ(X0 = x0, ..., Xt = xt) = Pπ(X̃0 = xt, ..., X̃t = x0).

(6) We say that a state x is essential if ρxy > 0 implies ρyx > 0. Otherwise, x is called inessential. Show

that if π is a stationary distribution, then π(y) = 0 for all inessential states y.
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(7) Suppose that p is irreducible and positive recurrent. Show that Ex[Ty] <∞ for all x, y ∈ S.

(8) Suppose that p is irreducible and has a stationary measure µ with
∑

x µ(x) = ∞. Show that p is

not positive recurrent.

(9) Give an example of a Markov chain with state space S and subsets B,C ⊆ S such that B is irreducible

but not closed and C is closed but not irreducible.

(10) Suppose that p is irreducible and let ν be any probability on S. Show that the transition function

q(x, y) =

p(x, y)
(

ν(y)p(y,x)
ν(x)p(x,y) ∧ 1

)
, y ̸= x

1−
∑

z ̸=x p(x, z)
(

ν(z)p(z,x)
ν(x)p(x,z) ∧ 1

)
, y = x

de�nes a reversible Markov chain with stationary distribution ν.

(11) Compute the expected number of moves it takes a knight to return to its initial position if it starts

on the corner of a chessboard, assuming that there are no other pieces on the board and that each

time it chooses a move at random from its legal moves.

(Consult the internet for any questions about chess.)

(12) Consider the following Markov chain on Z. When the current state is i > 0, the chain moves to i− 1

with probability p and to i+ 1 with probability q = 1− p < p. When the current state is j < 0, the

next state is j + 1 with probability p and j − 1 with probability q. From 0, the chain moves to ±1

with equal probability. Compute the stationary distribution of this chain.
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Homework 5

(1) Show that the state space of an irreducible Markov chain with period k can be uniquely decomposed

as S = S1 ⊔ · · · ⊔ Sk where P (Xn+1 ∈ Sj+1 |Xn ∈ Sj ) = 1 (with the sums in the S indices taken

mod k). Moreover, S cannot be partitioned into more than k sets having this relationship.

(2) Suppose that µ is a probability on a �nite group G with support Σ = {g ∈ G : µ(g) > 0}.
The (right-invariant) random walk on G driven by µ has transition probabilities p(g, h) = µ(hg−1).

We have seen that this chain is irreducible precisely when Σ generates G. Assuming irreducibility,

show that the walk is aperiodic if and only if Σ is not contained in a coset of a proper normal

subgroup of G.

(By de�nition, the period is the greatest common divisor of {m : e = sm · · · s1 for some s1, . . . , sm ∈ Σ}
where e denotes the identity in G).

(3) Show that if µ and ν are probabilities on a countable set S and we de�ne w on S × S by

w(z, z) = min{µ(z), ν(z)},

w(x, y) =
(µ(x)− w(x, x)) (ν(y)− w(y, y))

1−
∑

z w(z, z)
,

then (X,Y ) ∼ w is a coupling of µ and ν with P (X ̸= Y ) = ∥µ− ν∥TV .

(4) Let p be a transition probability for a Markov chain with countable state space S and stationary

distribution π. We write µpt for the distribution of Xt when X0 ∼ µ, and ptx for the distribution of

Xt when X0 = x. Let P be the collection of probability measures on S. Show that

(a) sup
µ∈P

∥∥µpt − π
∥∥
TV

= sup
x∈S

∥∥ptx − π
∥∥
TV

.

(b) sup
x,y∈S

∥∥ptx − pty
∥∥
TV

≥ sup
x∈S

∥∥ptx − π
∥∥
TV

.
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(5) Let µ and ν be probabilities on a countable set S and suppose that p is a transition probability for

a chain with state space S. Prove that

∥µp− νp∥TV ≤ ∥µ− ν∥TV .

In particular, this shows that if π is a stationary distribution for p, then
∥∥pn+1

x − π
∥∥
TV

≤ ∥pnx − π∥TV .

(6) Lazy random walk on the n-cycle is de�ned by p(x, x) = 1
2 , p(x, x + 1) = p(x, x − 1) = 1

4 where all

additions are modulo n. As an irreducible random walk on a �nite group, the stationary distribution,

π, is uniform on Z/nZ.

Set X0 = x, Y0 = y and de�ne Xk, Yk as follows: Let U1, U2, ... and V1, V2, ... be i.i.d. uniform on

{−1, 1}, independent of each other. While Xk−1 ̸= Yk−1, if Uk = 1, set Xk = Xk−1 + Vk (mod n),

Yk = Yk−1, and if Uk = −1, set Xk = Xk−1, Yk = Yk−1 + Vk (mod n). If Xk−1 = Yk−1, set

Xk = Yk = Xk−1 +
1
2 (Uk + 1)Vk (mod n).

In words, at each time step, we �ip a fair coin to decide whether to move the �rst chain or the second

according to ordinary simple random walk on the cycle. Once the two chains meet, they couple and

evolve together ever after.

Use the coupling lemma and Exercise 4 to show that ∥ptx − π∥TV ≤ 1
4c whenever t ≥ cn2.

(7) Consider the following method of shu�ing a deck of n cards: At each stage, choose a card uniformly

at random and place it at the top of the deck. Use a coupling argument to show that the deck is

completely mixed once every card has been chosen at least once. Conclude that the mixing time is

O (n log(n)).

(8) Suppose that X and Y are independent normals with mean 0 and variance σ2. Show that X + Y

and X − Y are independent normals with mean 0 and variance 2σ2.

(Hint: The standard Gaussian distribution is rotationally invariant.)
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Homework 5.5

(1) Let (Ω,F , P, T ) be a probability preserving dynamical system. Recall that an event A ∈ F is called

invariant if the symmetric di�erence of A and T−1A has probability zero. A random variable X is

invariant if X ◦ T = X a.s.

Show that I = {A ∈ F : A is invariant} is a sub-σ-�eld of F , and X is measurable with respect to

I if and only if X is invariant.

(2) Show that T is ergodic if and only if for every A ∈ F with P (A) > 0, we have
⋃∞

n=0 T
−nA = Ω

(up to null sets).

(3) Show that T is ergodic if and only if for every A,B ∈ F with P (A), P (B) > 0, there is a j ∈ N such

that P (A ∩ T−jB) > 0

(4) Let (Ω,F , P ) be [0, 1) with the Borel sets and Lebesgue measure. We saw in class that if d ∈ N,
then the map Tdx = dx (mod 1) is probability preserving (and ergodic).

Show that that if β = 1+
√
5

2 , then Tβx = βx (mod 1) does not preserve Lebesgue measure, but does

preserve the probability Q de�ned by

Q(B) =

∫
B

g(x)dx with g(x) =

{
1

β−1+β−3 , 0 ≤ x < β−1

1
β(β−1+β−3) , β−1 ≤ x < 1

.

(Hint: β−1 = β − 1, β2 = β + 1, and {[0, a) : a ∈ [0, 1)} generates F .)

(5) Let (Ω,F , P, T ) be a probability preserving dynamical system. Show that T is ergodic if and only if

1

n

n−1∑
k=0

P
(
U ∩ T−kV

)
→ P (U)P (V )

for all U, V ∈ F .

(6) Show that if f ∈ Lp, 1 ≤ p <∞, then 1
nf

n → E[f |I ] in Lp.
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Homework 6

(1) Let {Bt}t≥0 be a standard Brownian motion and let a < 0 < b. De�ne T (x, y) = inf {t ≥ 0 : Bt ∈ {x, y}}.
Show that E[T (a, b)] = a2E

[
T
(
1, b

a

)]
, hence the expected exit time from a symmetric interval [−b, b]

is a constant multiple of b2.

(2) Suppose that {Bt}t∈[0,T ] is a Brownian motion on [0, T ]. Show that the time reversed process

{BT−t −BT }t∈[0,T ] is a standard Brownian motion on [0, T ].

(3) Using the Lévy construction of Brownian motion given in class, show that if f : [0, 1] → R is

continuous with f(0) = 0 and {B(t) : t ≥ 0} is a standard Brownian motion, then for any ε > 0,

P

(
sup

0≤t≤1
|B(t)− f(t)| < ε

)
> 0.

(4) Let {Bt}t≥0 be a standard Brownian motion. Prove that

sup
0≤s<t≤1

|Bt −Bs|
|t− s|γ

= ∞ a.s.

whenever γ ≥ 1
2 .

(5) Consider a (not necessarily nested) sequence of partitions 0 = t
(n)
0 ≤ t

(n)
1 . . . ≤ t

(n)
k(n) = t with mesh

converging to 0.

(a) Show that

lim
n→∞

k(n)∑
j=1

(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2
→ t in L2.

(We say that Brownian motion has quadratic variation V
(2)
B (t) = t.)

(b) Show that if the sequence of partitions satis�es
∑∞

n=1

∑k(n)
j=0

(
t
(n)
j − t

(n)
j−1

)2
< ∞, then the

convergence in part (a) is almost sure.

(An example is partitioning [0, 1] with t
(n)
j = j

2n , j = 0, 1, ..., k(n) = 2n.)

(c) Argue that
∑k(n)

j=1

∣∣∣B (t(n)j

)
−B

(
t
(n)
j−1

)∣∣∣→ ∞ a.s.
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(6) A standard Brownian bridge is a Gaussian process {X(t) : 0 ≤ t ≤ 1} with continuous paths, mean

0 and covariance Cov (X(s), X(t) =) s(1 − t) for 0 ≤ s ≤ t ≤ 1. If {B(t) : t ≥ 0} is a standard

Brownian motion, verify that the following processes are Brownian bridges.

(a) X1(t) = B(t)− tB(1)

(b) X2(t) = (1− t)B
(

t
1−t

)
1[0,1)(t)

(7) Let {B(t) : t ≥ 0} be a standard Brownian motion and let T be a stopping time with E[T ] < ∞.

De�ne a sequence of stopping times by T1 = T , Tn = T (Bn)+Tn−1 where T (Bn) is the same function

as T but associated with the Brownian motion Bn(t) = B(t+ Tn−1)−B(Tn−1).

(a) Show that limn→∞
B(Tn)

n = 0 a.s.

(b) Show that B(T ) is integrable.

(c) Show that limn→∞
B(Tn)

n = E [B(T )]. (Combined with (a), this gives Wald's lemma.)
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