
E.F. Deveney:
PH414 Experimental.
RLC Filters Experiment Data Acquisition LabVIEW Code

We’ll start with our general purpose data acquisition program that we used for the simple
pendulum experiments (note: we also built our Fourier lab code from this same
prototype).

The idea now is to measure two sinusoidal signals ()outin VV & , pull out info from each

such as amplitudes, frequencies and phases and then perform computations such as
in

out

V
V

(note, up to now we have only been measuring one signal at a time). The way to measure
two signals a time in LabVIEW is to use a different analog input (AI). Instead of

 (acquire multiple points, one waveform – note one squiggly line) we will use

 (acquire multiple points from waveformS – note several squiggly lines).

***Important to realize how LabVIEW does take multiple signal measurements: for a
given sample rate, say 100 Hz, instead of taking 100 samples per second from channel 1,
it multitasks between the two channels so it takes one sample from channel 1, then 1 from
channel 2 and back and forth between the two channels. The upshot is that the actual
sample rate for each channel is ½ of the measurement rate. You must keep this in mind
as you decide on the sample rate and ultimately how you interpret your data.***

OK, we will still need to make a plot and then save and write data to a text file to be used
in a spreadsheet program like EXCEL. We will not need the for-loop. So, the diagram
after removing some things, looks as follows:

Remember that to erase controls and indicators, you must delete them from the front
panel.

Now add the acquire waveforms AI from the ‘data acquisition\analog input’ function.
With the wiring tool, create a constant for the device number, and then controls for the
channels, number of samples per channel and sample rate. Note that channel is now
channelS and number of samples is per channel.

On the front panel, channels control looks like this to take
measurements from channels 0 and 1.

The next step is to separate the data from each channel. This is accomplished as follows:

The outputs from the index arrays are just the individual waveforms from each channel.

We can now use LabVIEW’s waveform analyzer (measurements) tools to get waveform
info, particulary the amplitude, frequency and phase (I’ve wired indicators to these
outputs):

Now we can look at the actual data we are interested in,
in

out

V
V

 and the relative phase (p1-

p2) (the two frequencies should be the same… ie the driving or reference frequency).

Next: Add three ‘index arrays’ (one each for the frequency, voltage ratio and phase
difference data) and wire to each the appropriate data into the ‘new element/sub array’
input. The idea is that we will be making arrays - lists of the frequency, voltage ratio and
phase difference – one point at a time. Each time we hit the get data button, LabView
will collect this data for the a given frequency we control. The index array will add the
data for the current frequency to the next frequency and so on.

The way we get LabView to add the data for each new frequency is to make what
amounts to a shift register for the case (true/false) we have. We used shifts registers to
keep adding data from a ‘for loop’ earlier.

Here is how. Right click the output of an array and create an indicator. Then right click,
click ‘create’ the ‘local variable’. This is essentially a copy of the array. Now move this
copy outside of the loop, right click and select ‘change to read’, and then wire this array
back into the index array inside of the loop. Do this for each of the index arrays.

Now we will bundle together
in

out

V
V

 vs frequency for one plot and (Phase Vout – Phase

Vin) for a second plot.

Go to the front panel and create two xy plots. Use the text tool to change the labels of the
axis and then right click on each axis, select format – decimal, and then number of
significant figures.

Wire these to our bundled arrays:

Next we have to take this data and make a ASCII text file = most generic form of file that
can be read by just about anything. We will build a new array with all pieces of
information (frequency, Vout/Vin, and phase difference) then transpose it (so EXCEL
likes it – puts the arrays of data in columns instead of rows) and send this to the ‘write
file’ part of our program.

The last things you have to do are:
1. Clean up unwanted things: You can do this by looking or if you double click the

broken go arrow,
And then click on each error you can see what needs to be done.
2. You will also have to clean up the ‘False’ case of the case structure. Select False and
then just erase everything inside. Since the case is not wired to the write directly
anymore, you do not need to define default values.
3. Then just arrange the front panel so that it is neat and makes good sense.

NOTE: good idea to put in ‘Directions”
CORRECTIONS = see next page

CORRECTIONS:

Oops… here are a couple of wiring corrections plus some ideas on how to spruce up the
front panel – to better identify and keep track of Vout and Vin – plus added a plot of the
actual scan of Vout and Vin together so you can see the signals and compare amplitudes
and phases.

Note: added Waveform graph right after the AI MULT Pt vi
Note: rewired data for ‘itteration Vout/Vin’ to idex for Vout/Vin data table (same for
phase). This was wrong before.
Note: Just made data channel names more clear, Vout and Vin

Here is how the cleaned up front panel looks:

Note the Waveform Graph has been added to look at the time domain scans for Vin and
Vout

