E.F. Deveney:
PH414 Experimental.
RLC Filters Experiment Data Acquisition LabVIEW Code

We’ll start with our general purpose data acquisition program that we used for the simple
pendulum experiments (note: we also built our Fourier lab code from this same

prototype).

B+ efid-ph414-labview-primer-daia-acquistion-prototype.vi *

Ele Edt Op ls Browse Window Help

[an] 13t appication Fork |+ | (B | [~ [~]

TalTrue =M M [F
I This bundles =
time, vlt [y} TTrue ~Bf
|data for an ¥ graph

[WAVEFORM = array of 3 pieces of info you can break up

Jwith 'get waveform components' [This wire: measn don't open

Inew file, add info to same

........... e
urber of samples S
fucte: pata ouTPy
:neir;\?;ucal i |] Juse hand tool to switch
tion of [l [From Fto T. This means
et o |_ lslow opened file to bs
ko Lotch i i lappended.
when MOTE: build array {add 2, 1-D arrays) =
ressed s 2.0 amay BUT need o transpese

M, link time:

Mate: For loop = # of Right: click on case and jarray to your volt
samples kaken |5dd & 'shift reqisker’ array

[with build arra:

B
| ¥DBL]
7|

can right click ta hide: L onjof
this array on =
panel if you like

Wire the starting time,
e will say 0

The idea now is to measure two sinusoidal signals (¥, & V.

out

), pull out info from each

. . . V.
such as amplitudes, frequencies and phases and then perform computations such as —2-
(note, up to now we have only been measuring one signal at a time). The way to measure
two signals a time in LabVIEW is to use a different analog input (Al). Instead of

(acquire multiple points, one waveform — note one squiggly line) we will use

(acquire multiple points from waveformS — note several squiggly lines).

***Important to realize how LabVIEW does take multiple signal measurements: for a
given sample rate, say 100 Hz, instead of taking 100 samples per second from channel 1,
it multitasks between the two channels so it takes one sample from channel 1, then 1 from
channel 2 and back and forth between the two channels. The upshot is that the actual
sample rate for each channel is /2 of the measurement rate. You must keep this in mind
as you decide on the sample rate and ultimately how you interpret your data.***

OK, we will still need to make a plot and then save and write data to a text file to be used
in a spreadsheet program like EXCEL. We will not need the for-loop. So, the diagram
after removing some things, looks as follows:

it File nowi?)

e
Wie ~H [This bundies [~F
ftime, wolt {x, v} ieader info For] :
ldata For an ¥ graph et fle
Lbch IThis wire measn don't open
Inewe file, add info to same
,,,,,, lopen fil
==e— & oI HH--- ==
Nhnte: oo Pata ouTrL!
Ic! ar':;e_ ! o2 N Bl luse hand tool to switch
mEtC aanca H] \ From F ko T. This means
:vcwltncrg o - S £ lallow opened fils ko be
lker Latch — appended.
leahien MOTE: build array (add 2, 1-D arrays) =
ressed |5 2-D array BUT need ko transpose

T onfoff|

o

Remember that to erase controls and indicators, you must delete them from the front
panel.

Now add the acquire waveforms Al from the ‘data acquisition\analog input’ function.
With the wiring tool, create a constant for the device number, and then controls for the
channels, number of samples per channel and sample rate. Note that channel is now
channelS and number of samples is per channel.

hannels {0
I/0 il
innnn-ww HULTFT

umber of samples)ch
@_

kscan rake {1000 scans/sec)|
b

channels {0}

I
On the front panel, channels control looks like this gl J| to take
measurements from channels 0 and 1.

The next step is to separate the data from each channel. This is accomplished as follows:

;;;;;;;;

channel '1' daka

hannels (0
1'd | . MOTE: bwo channel waveform = thick brown line = Z-wave array
AT =0 use index array bo seaparte the bwo wave arravs.
[1=l
umber of samplesich E— =t O
Ea]—

channel '0° daka

kcan rake (1000 scansisec)]
*

The outputs from the index arrays are just the individual waveforms from each channel.

We can now use LabVIEW’s waveform analyzer (measurements) tools to get waveform

info, particulary the amplitude, frequency and phase (I’ve wired indicators to these
outputs):

hani freq; f1 (Hz
G
channel 1:F1, a1 and pt
han 1 ampl; a1

han 1; phase, p1 (deg
5

MOTE: bwo channel waveform = thick brown line = Z-wave array
H s0 use index array ko seaparte the bwo wave arrays,

......... han 2 freq; F2 (Hz
s »

channel '0° data

L3

Ehan 2 phase; p2 (deqg)
5

Ecan rate (1000 scansfsec
[}

channel 2:f2, a2 and p2

. .V .
Now we can look at the actual data we are interested in, —*~ and the relative phase (p1-

p2) (the two frequencies should be the same... ie the driving or reference frequency).

Next: Add three ‘index arrays’ (one each for the frequency, voltage ratio and phase
difference data) and wire to each the appropriate data into the ‘new element/sub array’
input. The idea is that we will be making arrays - lists of the frequency, voltage ratio and
phase difference — one point at a time. Each time we hit the get data button, LabView

will collect this data for the a given frequency we control. The index array will add the

data for the current frequency to the next frequency and so on.
[True ‘t

hani freq; f1 (Hz
b
channel 1:F1, al and pl
han 1 ampl; a1

MOTE: two channel waveform = thick brown line = 2-wave array
50 use index arraw bo seaparke the bwo wave arrays.

L}

L
L]
Ecan rate (1000 scansjsec G
il Ehan 2 phase; p2 (deq)|
jchannel 2:F2, a2 and p2 b

¥

Phase Yout-Phase Yin
»

FREQUEMNCY ARRAY:

"2 [
-

AMPLITUDE Wout[Vin ARRAY

[
j222)

-t
PHASE ARRAY: o

The way we get LabView to add the data for each new frequency is to make what

amounts to a shift register for the case (true/false) we have. We used shifts registers to
keep adding data from a ‘for loop’ earlier.

Here is how. Right click the output of an array and create an indicator. Then right click,
click ‘create’ the ‘local variable’. This is essentially a copy of the array. Now move this
copy outside of the loop, right click and select ‘change to read’, and then wire this array

back into the index array inside of the loop. Do this for each of the index arrays.

nidex array: wire an oukput indicator, then create

I
a local variable - which wou then move over outside of the
tif case struckure, Then convert that local varisble ko a read

i
FREQUENCY ARRAY:

L}
]
L}

S

AMPLITUDE Youtvin ARRAY

g freauency]

Fhase: Yout-vin
b
PHASE ARRAY:

8
Jidzi]

v
Now we will bundle together —2

vs frequency for one plot and (Phase Vout — Phase

Vin) for a second plot.

=

=

Go to the front panel and create two xy plots. Use the text tool to change the labels of the

axis and then right click on each axis, select format — decimal, and then number of
significant figures.

3.000000 -

2,000000 -
1.000000 =

Youkiin Plat 0 N Phase Yout - Phase Yin Plat O N
10,000000 - 10, 000000 -
. EES=mmaE=s o EES=mmaEms
N ESSSSs=ess ER. ESSSSs=sss
=3
g o ESSSSs=sss g ESSSSs=ss
= T
= 6,000000- £ £.000000-
: ———— s ————
= L5}
= - a -
- - £ ESs=======
= =
T 4.000000 - L 4.000000 -
2 =
= 2
Li]
ESSSSs=sss : ESSSSs=ss
=
EESSSSSEet . SSSSSsceec

0.000000 -
0.000000

1
5.000000
frequncy Hz

|
10. 00000

3000000 —

Z,000000 -
1.000000 -

0.000000 -
0,000000

]
5,000000
frequncy (Hz)

|
10,0000

Wire these to our bundled arrays:

Inde arr
a local wa
kf case s

E@Lhase Wauk - Phase Win
=5

Next we have to take this data and make a ASCII text file = most generic form of file that
can be read by just about anything. We will build a new array with all pieces of
information (frequency, Vout/Vin, and phase difference) then transpose it (so EXCEL
likes it — puts the arrays of data in columns instead of rows) and send this to the ‘write
file’ part of our program.

The last things you have to do are:
1. Clean up unwanted things: You can do this by looking or if you double click the

[#]

broken go arrow, =

And then click on each error you can see what needs to be done.

2. You will also have to clean up the ‘False’ case of the case structure. Select False and
then just erase everything inside. Since the case is not wired to the write directly
anymore, you do not need to define default values.

3. Then just arrange the front panel so that it is neat and makes good sense.

NOTE: good idea to put in ‘Directions”
CORRECTIONS = see next page

CORRECTIONS:

Oops... here are a couple of wiring corrections plus some ideas on how to spruce up the
front panel — to better identify and keep track of Vout and Vin — plus added a plot of the

actual scan of Vout and Vin together so you
and phases.

can see the signals and compare amplitudes

Note: added Waveform graph right after the Al MULT Pt vi
Note: rewired data for ‘itteration Vout/Vin’ to idex for Vout/Vin data table (same for

phase). This was wrong before.

Note: Just made data channel names more clear, Vout and Vin

WTrue ~pf

[aveform Graph: Flat

of ¥in and vout signals]

[}

=1 [NOTE: two channel waveForm = Ehick brown ine = 2-wave array|

scan rate (1000 scansjsec

hanl = Yout freq (He
b

charinel 1:F1, al and pl

=

han 1 = Yout ampl

3

han 1 = Vout phase (deg

5

0 use index array to seaparte the bwo wave arrays.
han 0 = ¥in, freq {He,

S 3

-t
channel '0' data

Ehan 0 = Yin phase; {deg)
channel 2:F2, a2 and p2 3

ltberation: Youb/vin

3

Etterat\on: Phase Yout:

3

[Tndex array: wire an output indicator, then create
la lacal variable - which you then move over outside of the

ltff case structure. Then conwert that local varisble to a read

i)

clusterfbundle

A=)
iant: Youtin vs Freq

= Frequency data table
FREQUEMCY ARRAY:

‘outfin data table
B -

AMPLITUDE Youlfvin ARRAY

Phase: Youk-Yin data tabls

3

PHASE ARRAY:

EEHL
(|

jarrafbuild arra

=

lant: delta phase vs Freg

array/[transpose

|
D

Here is how the cleaned up front panel looks:

B efd-phd14-labview-primer-data-acquistion-prototype-to-RLC-filters.vi

Browse Window Help

13pt Application Font | « [8o [+][#5+]

Note the Waveform Graph has been added to look at the time domain scans for Vin and
Vout

