The 12 Principles of GREEN CHEMISTRY

Green chemistry is an approach to chemistry that aims to maximize efficiency and minimize hazardous effects on human health and the environment. While no reaction can be perfectly 'green', the overall negative impact of chemistry research and the chemical industry can be reduced by implementing the 12 Principles of Green Chemistry wherever possible.

1. WASTE PREVENTION
 Prioritize the prevention of waste, rather than cleaning up and treating waste after it has been created. Plan ahead to minimize waste at every step.

2. ATOM ECONOMY
 Reduce waste at the molecular level by maximizing the number of atoms from all reagents that are incorporated into the final product. Use atom economy to evaluate reaction efficiency.

3. LESS HAZARDOUS CHEMICAL SYNTHESIS
 Design chemical reactions and synthetic routes to be as safe as possible. Consider the hazards of all substances handled during the reaction, including waste.

4. DESIGNING SAFER CHEMICALS
 Minimize toxicity directly by molecular design. Predict and evaluate aspects such as physical properties, toxicity, and environmental fate throughout the design process.

5. SAFER SOLVENTS & AUXILIARIES
 Choose the safest solvent available for any given step. Minimize the total amount of solvents and auxiliary substances used, as these make up a large percentage of the total waste created.

6. DESIGN FOR ENERGY EFFICIENCY
 Choose the least energy-intensive chemical route. Avoid heating and cooling, as well as pressurized and vacuum conditions (i.e. ambient temperature & pressure are optimal).

7. USE OF RENEWABLE FEEDSTOCKS
 Use chemicals which are made from renewable (i.e. plant-based) sources, rather than other, equivalent chemicals originating from petrochemical sources.

8. REDUCE DERIVATIVES
 Minimize the use of temporary derivatives such as protecting groups. Avoid derivatives to reduce reaction steps, resources required, and waste created.

9. CATALYSIS
 Use catalytic instead of stoichiometric reagents in reactions. Choose catalysts to help increase selectivity, minimize waste, and reduce reaction times and energy demands.

10. DESIGN FOR DEGRADATION
 Design chemicals that degrade and can be discarded easily. Ensure that both chemicals and their degradation products are not toxic, bioaccumulative, or environmentally persistent.

11. REAL-TIME POLLUTION PREVENTION
 Monitor chemical reactions in real-time as they occur to prevent the formation and release of any potentially hazardous and polluting substances.

12. SAFER CHEMISTRY FOR ACCIDENT PREVENTION
 Choose and develop chemical procedures that are safer and inherently minimize the risk of accidents. Know the possible risks and assess them beforehand.

© COMPOUND INTEREST 2015; WWW.COMPOUNDCHEM.COM
Shared under a CC Attribution-NonCommercial-NoDerivatives licence.