Names of all students (please print)						
CHEM 243 Organic Chemistry I	Points	(10 max)				

Worksheet #4: September 18, 2024. Complete the following worksheet by collaborating with a group of 3-4 students. You can use a text book or your lecture video notes. You must work together, with the names of all students included on **ONE** sheet and turned in for a group grade.

Please join your assigned work group!

- (1) Acids and Bases. For each acid draw the conjugate base, and for each base draw the conjugate acid. Be sure to use appropriate formal charges in the conjugates (if needed).
- O \parallel (a) $HO-C-CH_2-CH_3$ conjugate base: (acid)
- (c) HSO₄ conjugate acid: (base)
- (d) $CH_3-CH_2-CH_2-C \equiv C-H$ conjugate base: (acid)
- (2) Acids, Bases, and pKa's. Use the pKa Table to look up the <u>approximate</u> pKa values for each acid given below. Then, rank these compounds based on increasing acid strength, with 1 = weakest acid and 5 = strongest acid.

	СН3-ОН	HBr	CH ₃ -NH ₂	нс≡сн	CH_3 — NH_3
approx. pKa values:					
Ranking:					

- (3) Acids, Bases, Conjugate Acids, Conjugate Bases, and pKa's. What follows is a series of acid-base reactions. Although I expect that you should be able to identify the more common acids and bases, in some cases I have placed lone pairs on the base. For each acid/base reaction shown below, do the following:
- (i) Label the acid (A) and base (B) <u>reactants</u>, and label the conjugate acid (CA) and conjugate base (CB) <u>products</u>;
- (ii) Using the pKa table, label each acid (A) and conjugate acid (CA) with their approximate pKa's.
- (iii) Based on the pKa values, in the box indicate whether the equilibrium favors the Reactants (R) or Products (P).

Example:
$$H_3C$$
 $\longrightarrow C$ $\longrightarrow C$

(a)
$$H_3C$$
— NH_2 + H — O — CH_2 — CH_3 — H_3C — NH_3 + O — CH_2 — CH_3

(c)
$$H_3C$$
— C == C — H + $Na NH_2$ NH₃ + H_3C — C = C Na

(4) Acid/Base Mechanisms. Complete each organic acid/base reaction shown below by:

- Identifying and labeling the acid and base reactants;
- Using curved arrows to indicate the base "grabbing" the acidic "H" from the acid;
- Drawing the structure of and labeling the conjugate acid and base;
- Assigning appropriate pKa values to the acid species in the reactants and products;
- Drawing equilibrium arrows that clearly show in which direction the reaction is favored.

(a)
$$CH_3$$
— C — O — H + H_3C — O H

(b)
$$CH_3$$
- CH_2 - N - H + $:OH$

(c)
$$CH_3-CH_2-N-H + CH_3-CH_2-O-H$$