Names of all students	(please print)	·
Names of all students	(please print)	

CHEM 243 Organic Chemistry I

Points (10 max)

Worksheet #26: November 27, 2024. Complete the following worksheet by collaborating with a group of 3-4 students. You can use a text book or your lecture video notes. You must work together, with the names of all students included on **ONE** sheet and turned in for a group grade.

***Questions 1-3 are additional background information on electrophilic addition that follow question 5 on Monday's WS-25.

(1) Electrophilic Addition Reactions: General Mechanism Questions based on video 8-2. Answer the following questions based on the reaction drawn at the right:

$$+$$
 H_2O \longrightarrow HO

- (a) <u>Label</u> the sp2 carbons of the alkene double bond with δ^+ and δ^- .
- (b) (Circle the correct responses) The (H_2O , HSO_4^- , H^+) species becomes bonded to the δ^+ sp2 carbon, and this species is referred to as the (nucleophile, electrophile, acid, base).
- (c) (Circle the correct responses) The (H_2O , HSO_4^- , H^+) species becomes bonded to the δ^- sp2 carbon, and this species is referred to as the (nucleophile, electrophile, acid, base).
- (2) Electrophilic Addition of Br₂ and Cl₂: General Mechanism Questions based on video 8-3. Answer the following questions based on the reaction drawn at the right:

$$+$$
 Br_2

- (a) <u>Label</u> the alkene double bond with δ^+ and δ^-
- (b) (Fill in the blanks) For the Br_2 reagent, one Br atom has a δ^+ charge, is called the ______, and becomes bonded to the (Circle: δ^+ or δ^-) sp2 carbon of the alkene.
- (c) (Fill in the blanks) For the Br₂ reagent, the other Br atom has a δ ⁻ charge, is called the ______, and becomes bonded to the (Circle: δ ⁺ or δ ⁻) sp2 carbon of the alkene.
- (d) Circle the correct response. The **key intermediate** in this reaction is called the:

 (carbocation bromonium ion hydronium ion bromide ion)
- (e) Draw the structure of the **key intermediate** in this reaction:

(3) Electrophilic Addition of Br₂ and a nucleophile: General Mechanism Questions based on video 8-3.

Answer the following questions based on the reaction drawn at the right:

$$+$$
 Br₂ + NaCN $+$ NaBr

- (a) <u>Label</u> the alkene double bond with δ^+ and δ^-
- (b) (Circle the correct responses) The (Br, Na, CN) species becomes bonded to the δ sp2 carbon, and this species is referred to as the (nucleophile, electrophile, acid, base, spectator).
- (c) (Circle the correct responses) The (Br, Na, CN) species becomes bonded to the δ^+ sp2 carbon, and this species is referred to as the (nucleophile, electrophile, acid, base, spectator).
- (4) **Electrophilic Addition Reactions.** Based on the background information, complete the **Electrophilic Addition Reactions** shown below by drawing the structure of the <u>major</u>, <u>neutral organic products</u>. It is NOT necessary to balance these reactions or write the mechanism. There are NO rearrangements and NO intramolecular reactions. **Do Not worry about stereochemistry.**

(c) +
$$CH_3OH$$
 H_2SO_4

(e) +
$$\operatorname{Cl}_2$$
 + $\operatorname{Na} \operatorname{CN}$ \longrightarrow

BONUS QUESTION!

Complete the following question to earn up to 5 Bonus Points

You may not ask the PALS for assistance

Bonus Points	

B-1. Electrophilic Addition Mechanism: Acid Catalyzed Addition of H₂O to an Alkene (3 steps). Write a complete mechanism that explains the formation of all products in the balanced net reaction shown below. Your mechanism must consist of a series of individual, balanced chemical equations, and curved arrows to show electron pair movement.

$$+$$
 H_2O H_2SO_4 OH

B-2. Mechanism Theory. In which Step is the H_2SO_4 being used in the mechanism you wrote above, and what is the purpose? Be specific!