CHEM 243 Organic Chemistry I

Points_____ (10 max)

Worksheet #2: September 11, 2024. Complete the following worksheet by collaborating with a group of 3-4 students. You can use a text book or your lecture video notes. You must work together, with the names of all students included on **ONE** sheet and turned in for a group grade.

You can join any table in room 477 or 481 (3-4 students per table)

(1) Characterizi	ng sp3 carbons.					он	∠CH ₂
(a) In the molecu of 1° (primary), 2 NOTE: The 1°, 2°	le drawn at the right, ²⁰ (secondary) and ³⁰ , ³⁰ designations only a	indicate the total nu (tertiary) carbons. apply to sp3 carbons.	mber H	₃ С—С	снсн_	–с—сн₂—сң́ сн₃	
Total 1º carbons	Total 2	° carbons	Total 3° c	arbons _		5	
(b) The C–OH (a	lcohol) carbon can be	designated as: 1	2º 2º	3°	(CIRCLE)		
(c) For the struct	ure drawn above: (i)	How many pi bonds	are there?				
	(ii)	How many rings are	there?		_		
	(iii) Based on your ansv (HINT: It is <u>not</u>	vers to (i) & (necessary to	ii), what calcula	t is the Hydrog te the HD)	gen Deficiency?	
(2) Hydrogen De	eficiency. An unknow	vn has the formula C	${}_{4}H_{8}.$				
(a) Calculate the	Hydrogen Deficiency	(HD):					
(b) Based on the alkene (C=C double bond)	HD and Formula, C carbonyl (C=O double bond)	IRCLE all possible fo alkyne (C=C triple bond)	unctional grou alcohol (R-OH)	.ps from	n the list below ether (R-O-R)	v: cycloalkyl (C atoms form a r	ing)
(3) Drawing Str	uctures. An unknow	n compound has a fo	rmula C ₄ H ₁₀ C).			
(a) Calculate the	Hydrogen Deficiency	(HD):					
(b) Based on the	HD and Formula , C	IRCLE all possible for	unctional grou	ups from	n the list below	v:	
alkene (C=C double bond)	carbonyl (C=O double bond)	alkyne (C=C triple bond)	alcohol (R-OH)		ether (R-O-R)	cycloalkyl (C atoms form a r	ing)
	1 0. 1						

(c) The unknown has one 3° carbon, three 1° carbons, and the oxygen is bonded to a 1° carbon. In the space at the right, draw an accurate structure that fits these data (bond-line or zig-zag). (4) Structures of Alkenes and Alkynes. Answer the following questions as indicated:

(a) Based on the formulas given below, indicated if the compound might be an alkane, alkene or alkyne:

C₅H₈_____ C₇H₁₆_____ C₆H₁₂____ C₃H₄____

(b) Which of the following terms best describes <u>each</u> structure drawn below (only one term per structure):

cis alkene (cis) trans alkene (trans) internal alkyne (int) terminal alkyne (ter) none of these (N) Н $CH_2 - CH_3$ СН $H_3C - C_{\pm}$ CH_2 H₃C CH_2 answer answer answer Br Br .с= -C -H CH_2 -CH₃ -CH₃ H₃Cн CH₂ answer answer_ answer

(5) Basic Calculations. The purpose of these calculations is to help prepare you for the laboratory. The compound you drew in problem #3 above, $C_4H_{10}O$, has a molecular mass of 74.12 g/mole. Answer the following questions using correct significant figures and units.

(a) If you had 0.1951 moles of this compound, how many grams would you have? Answer: _____

(b) Assuming this compound is a liquid, based on your answer to (a), how many mL would you have if the density is 0.914 g/mL?

Answer: _____

Use this space for your calculations:

(6) Functional Groups.

(a) In the molecule drawn below, <u>label</u> each functional group using the (a - j) letter codes given. Some codes may be used <u>once</u>, others not at all.

(ii) How many rings are there?

(iii) Based on your answers to (i) & (ii), what is the Hydrogen Deficiency? ______ (HINT: It is not necessary to calculate the HD)