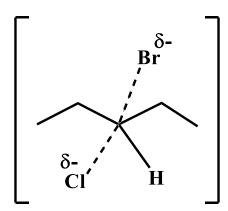

Names of all students (please print)			
CHEM 243 Organic Chemistry I	-	Points	(10 max)
Worksheet #16: October 30, 2024. Comple group of 3-4 students. You can use a text boottogether, with the names of all students include	ok or your lecture video	notes. You must work	
From now on you can expect to see "think or require you to use your problem-solving skill Your course notebook will be essential! Reassumption that you have: (1) watched the vopen on your bench.	lls, and information from emember, my workshee	m earlier in the course. ets are designed with the	
(1) SN2 Reactions Background Information	on. Fill in the blanks to c	complete each sentence	about SN2 reactions.
(a) In an SN2 reaction, the	substitutes fo	or the	
(b) In SN2 reactions, the electrophilic carbon	has acharg	ge, and is bonded to the	·
(c) In SN2 reactions, the nucleophile can best	be described as a		
(d) In SN2 reactions, the leaving group forms	s a	as a	product
(d) In SN2 reactions, the nucleophile forms a leaving group.	bond to the electrophili	c carbon from the side	
(e) In SN2 reactions, the nucleophile forms a leaves. This is referred to as a	_		ne that the leaving gro
(2) SN2 Reactions – The Energy Diagram. The figure at the right represents an exothermic Energy Diagram for a one-step SN2 reaction. Complete the blanks a-f to label the: Reactant (R) Product (P) Activation Energy (AE) Energy (E) Transition State (TS) Progress of Reaction (PR)	(c)	(e) (d)	(f)


(b) _____

(3) SN2 Reaction Theory. Answer the following questions for the SN2 reaction drawn below:

- (a) Label the <u>electrophilic carbon</u> with a δ + charge.
- (b) What is the Nucleophile (be specific and write with correct charge, if relevant)
- (c) What is the Leaving Group (be specific and write with correct charge, if relevant)
- (d) Is the Leaving Group bonded to a 1° , 2° , or 3° carbon: CIRCLE your answer.
- (e) What is the role of the K⁺ ion?

(4) SN2 Reactions – **The Transition State.** The hypothetical structure of the Transition State for the SN2 reaction shown in question #3 is drawn below. Why is the SN2 Transition State referred to as being "crowded"?

Complete the following Bonus Questions with the students in your group.

This is "Pumpkin-ane"

(a) How	many <u>3°</u>	carbons	can you	find?	
		<u>.</u>	•		

(b) What is the Hydrogen deficiency ?	
(Hint – count the rings)	

(c) How many	chiral carbons	can you find?	
--------------	----------------	---------------	--

(d) What is the maximum # of stereoisomers?

(e) (Could Pumkinane	be a Meso	Compound?	YES	NO
-------	-----------------	-----------	-----------	-----	----

(g) Using the atomic numbers in each box, spell Halloween words with the Periodic Table:

16	84	8	19	39

67	29	16	84	6	92	16

5	8	8

(h) Can you come up with your own Halloween word(s) using the periodic table?