Names of all students (please print)				
CHEM 243 Organic Chemistry I		Points	(10 max)	
Worksheet #15: October 20, 2021. Complete the for You can use a text book or your lecture video notes. ONE sheet and turned in for a group grade.				
From now on you can expect to see "think outside problem-solving skills, and information from earlier worksheets are designed with the assumption that y noteboom."	in the course. A course noteb	ook will be essenti	ial! Remember, my	
(1) SN2 Reactions Background Information. Place	e an "X" next to each term that	is <u>associated</u> with	SN2 reactions.	
not a stereospecific reaction	substrate reactivity: methyl $> 1^{\circ} > 2^{\circ} >>> 3^{\circ}$			
stereospecific reaction	substrate reactivity: methyl $<<<1^{\circ}<<2^{\circ}<3^{\circ}$			
concerted mechanism	nucleophile is best defined as a base			
nucleophile "attacks" same side as Lg	nucleophile is best	nucleophile is best defined as a acid		
nucleophile "attacks" opposite side as Lg	leaving group forms a strong base			
crowded transition state	leaving group forms a <u>weak</u> base			
(2) SN2 Reactions – Substrate (alkyl halide) React SN2 reaction, (1 = most reactive5 = least reactive	s).	trates in order of th	eir reactivity in an	
CI CI			~ \	
(3) SN2 Reaction Theory. Answer the following que	estions for the SN2 reaction dra	awn below:		
+ KI —		+ KBr		
(a) What is the Nucleophile (write with correct charge	e if relevant)			
(b) What is the Leaving Group (write with correct charge)	arge if relevant)			

(c) What is the role of the K⁺ ion?

(4) SN2 Energy Diagram. For the exothermic SN2 reaction at the right, draw a completely labeled Energy Diagram. Be sure to label the position of the: reactant, product, transition state, and activation energy.

Reaction Progress

(5) SN2 Reactions: Nucleophile Reactivity.

(a) Rank the following nucleophiles in order of their reactivity in an SN2 reaction (1 = most reactive......4 = least reactive). **HINT:** Usually, the stronger base = the more reactive nucleophile, but all of these nucleophiles have about the same base strength!

(b) EXPLAIN the basis to your answer in 5(a) above.

(c) Which nucleophile <u>in each pair</u> will react faster in SN2 reactions? <u>Circle one choice in each pair</u>. **HINT:** The stronger base = more reactive nucleophile. **EXCEPTION:** When comparing neutral species in the same

column of the periodic table, the LARGER species is the most reactive (more polarizable).

AsH₃ or NH₃

HO or HS

Cl or PH₂

NH₃ or Na⁺ NH₂

(6) SN2 Reactions: Predicting the Products, Stereochemistry, and the One-Step Mechanism.

(a) Complete the following two SN2 reactions by drawing **only the substitution product** with the correct stereochemistry. You do not need to balance these reactions. **HINT: Inversion of configuration!**

(b) Now, for EACH reaction draw above in curved arrows to the reactant side that explains the formation of all products. In a mechanism we use curved arrows to show electron pair movement as covalent bonds are being made and broken. You do not need to re-draw the reactions, just add the curved arrows above.