NAME (PRINT CLEARLY)_____

I am on my honor that I will not discuss the contents of this exam with anyone until after 6:00 pm on Monday, September 30, and will notify Dr. Brush if I am made aware of any cases of academic dishonesty.

I understand and agree to these conditions (signature)_____

CHEM 243 ORGANIC CHEMISTRY I Exam I (version-2), Friday, September 27, 2024

Answer all questions in the space provided, continuing on the back if necessary. **Read each question carefully and be sure to answer all parts to each question!** This exam is worth a total of 150 points.

Exams will be returned within one week. An answer key to this exam will be linked to the course web page.

(37) 1	-		
(9) 2			
(20) 3	-		
(10) 4	-		
(10) 5	-		
(47) 6	-		
Sub-total =	(133) x 1.128 =		
Total Points(1	(50) =	%	
Total Worksheet Points to da	te =	%)

IF YOU DO NOT UNDERSTAND A QUESTION, PLEASE ASK FOR AN EXPLANATION!

1. (37 Points) Answer the following questions as indicated.

(a) Answer the following questions for the compound drawn at the <u>right</u> :		^{a)} ——CH ₂ – OH	O 	—СН— СН ₃	-CH ₂ -	(c) —CH—C	;H ₂	
(i) What is the <u>Hybridization and Geometry</u> for atoms labeled (a) – (c):								
(a)	_ and					_		
(b)	_ and					_		
(c)	_ and					_		
(ii) Indicate the number of:(iii) For the structure drawn How many pi b	1º carbo above: bonds are th	ns nere?	_ 2º cai	rbons		3° carbons		
How many ring	gs are there	?						
Based only on	pi bonds ar	nd rings, wł	nat is the	Hydroge	n Defici	ency?		
(iv) Based on the functional be present (circle):	groups in t	the compou	nd above	e, which o	of the fo	llowing IR	bands might	
	1700	2100) .	3300	320	0-3600		
(b) In the molecule drawn below, which	h of the foll	lowing fund	ctional gr	oups are	present	? Circle you	ır choice(s).	

(d) Rank the following molecules in order of increasing acidity (1 = weakest......4 = strongest).

H4Si _____ H2S ____ HCl ____ H3P ____

(e) Rank the following molecules in order of increasing acidity (1 = weakest......4 = strongest). The acid proton is in **bold** print.

(f) Rank the following molecules in order of <u>base strength</u> (1 = weakest......4 = strongest).

2. (9 Points) Comparing Organic Structures. Are the following pairs of compounds:

page 4 3. (20 Points) Organic Structure Identification. An unknown organic compound with a formula of C₈H₁₄O is thought to be one of the three molecules drawn below (I, II, or III):

(a) Calculate the Hydrogen Deficiency (HD) for this unknown (C₈H₁₄O): _

(b) Based on the **HD** and Formula, what type(s) of functional groups might be present? **CIRCLE all** possibilities from the list below:

alkene	carbonyl	alkyne	alcohol	ether	cycloalkyl
(C=C double bond)	(C=O double bond)	(C≡C triple bond)	(R-OH)	(R-O-R)	(C atoms form a ring)

(c) Based on the information in (a) and (b), the unknown could be: (I) (II) (III) (circle all that apply)

(d) The IR spectrum for this unknown is given below. Place an "X" for each functional group consistent with the IR data:

CH₃

CH

(e) Based on all the information above, the unknown could be: (I) (II) (III) (circle all that apply)

(f) The unknown has two 1° carbons, three 2° carbons, and two 3° carbon. Based on all the information above, identify the unknown by circling <u>ONE</u> structure at the right: (I)

4. (10 Points) Basic Calculations (use correct significant figures and units).

The compound in problem #4 (C8H14O) has a molecular mass of: 126.2 g/mole

(a) If you had 0.3112 grams of this compound, how many moles would you have?

(b) You accidently spilled this compound on the lab bench. You used a spatula to recover as much as possible. After re-weighing, you now have 0.2275 g.

Calculate your % Recovery _____

You MUST show your work in the space below:

5. (10 Points) "Zig-Zag" structures. Re-draw each of the following compounds as "zig-zag" structures.

6. (47 Points) Acid/Base Questions.

(a) Acid/Base Reactions and Mechanisms. Illustrate the complete mechanism for each of the acid-base reactions shown below. You must complete each of the following exercises:

- Label the Acid (A) and Base (B) on the reactant side of the equation;
- Use curved arrows to indicate the flow of electrons;
- Draw the products of the reaction, and make sure that the equation is balanced;
- Label the Conjugate Acid (CA) and Conjugate Base (CB);
- Assigning approximate pKa values to the <u>reactant acid</u> and <u>product conjugate acid</u>;
- Drawing equilibrium arrows that **clearly show** in which direction the reaction is favored.

(ii)
$$CH_3 - C = C - H + HO^{\Theta}$$

- (b) Resonance. For the acid shown below, draw: (i) the <u>conjugate base</u>
 - (ii) all possible resonance structures and,
 - (iii) a resonance hybrid

(c) Effect of pH & pKa on Acid/Base Structure. The compound drawn below is shown as it would exist at pH 3.

(i) Which is the correct chemical form of this compound at **pH 7**? **Circle your answer:**

(ii) Based on the structure in the box at pH 3, and the structure you circled at pH 7, would this compound be <u>more</u> water soluble at (CIRCLE):

pH 3 or pH 7 or equally soluble at either pH

(iii) **Briefly** explain your reasoning for your answer to (ii) above.