

Spontaneous Processes

A **spontaneous** process occurs by itself without any ongoing outside intervention

Examples: A cube of ice melting in water; a car rusting; sodium metal (Na) and chlorine gas (Cl₂) forming table salt (NaCl)

Spontaneous chemical reactions behave the same way

- > Reaction continues until equilibrium is reached
- If a reaction is spontaneous in one direction, it is not spontaneous in the other

11

Examples of spontaneous reactions in one direction:

- The ice cube that melted (spontaneous) will never turn back into an ice cube (nonspont.) no matter how long you let it sit in water at room temperature.
- Na metal and Cl₂ gas combine readily to form NaCl (spontaneous), but we never find NaCl decomposing into Na metal and Cl₂ gas (nonspont.). Have you ever smelled Cl₂ gas or seen Na metal from the salt shaker?

In the examples above *energy is conserved* (1st law). Yet one process occurs while the other does not.

12

Spontaneous processes may need a little "push" to get started

Example: Hydrogen and oxygen gases burn spontaneously only after being ignited by a spark

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(I)}$$

The reverse reaction is nonspontaneous (i.e. Water does not simply decompose into H₂ and O₂ gases)

Note: Do not confuse spontaneous with *instantaneous*. Some spontaneous reactions are extremely slow, like rusting of iron.

13

Nonspontaneous reactions happensCan we make nonspontaneous reactions happens \diamond Yes. It happens everyday. HOW? \diamond By supplying energyExamples:Photosynthesis ($CO_{2(g)} + H_2O_{(l)} = Carbohydrates$) takes place upon absorption of solar energyThe reaction $2H_2O_{(l)} \iff 2H_{2(g)} + O_{2(g)}$ happens if we pass electricity through water (electrolysis)

TABLE 17.2 Standard Molar Entropy Values (S°) for Selected Substances at 298 K							
Substance	S° (J/mol \cdot K)	Substance	S° (J∕mol • K)	Substance	S° (J/mol • K)		
$\begin{array}{l} \text{Gases} \\ \text{H}_{2}(g) \\ \text{Ar}(g) \\ \text{CH}_{4}(g) \\ \text{H}_{2}\text{O}(g) \\ \text{N}_{2}(g) \\ \text{NH}_{3}(g) \\ \text{F}_{2}(g) \\ \text{O}_{2}(g) \\ \text{Cl}_{2}(g) \\ \text{Cl}_{2}(g) \\ \text{C}_{2}\text{H}_{4}(g) \end{array}$	130.7 154.8 186.3 188.8 191.6 192.8 202.8 205.2 223.1 219.3	Liquids $H_2O(l)$ $CH_3OH(l)$ $Br_2(l)$ $C_6H_5(l)$	70.0 126.8 152.2 173.4	Solids MgO(s) Fe(s) Li(s) Cu(s) Na(s) K(s) NaCl(s) $CaCO_3(s)$ $FeCl_3(s)$	27.0 27.3 29.1 41.6 51.3 64.7 72.1 91.7 142.3		
CO ₂	213.6	Copyright © 2008 F	earson Prentice Hall, Ir	16.	22		

Does the answer make sense? [A (-) Δ S for the combustion of methane]

$$CH_{4 (g)} + 2O_{2 (g)} \longrightarrow CO_{2 (g)} + 2H_2O_{(I)}$$

3 moles of gas are converted to just 1 mole of gas and 2 moles of a more ordered liquid state

In general, a reaction that results in *an increase in the number of moles of gas is accompanied by an increase in entropy.* Conversely, if the number of moles of gas decreases, a (-) Δ S results.

TABLE 17.1 The Effect of ΔH , ΔS , and T on Spontaneity								
ΔH	ΔS	Low Temperature	High Temperature	Example				
- + +	+ - +	Spontaneous ($\Delta G < 0$) Nonspontaneous ($\Delta G > 0$) Spontaneous ($\Delta G < 0$) Nonspontaneous ($\Delta G > 0$) Copyright ©	Spontaneous ($\Delta G < 0$) Nonspontaneous ($\Delta G > 0$) Nonspontaneous ($\Delta G > 0$) Spontaneous ($\Delta G < 0$) 2008 Pearson Prentice Hall, Inc.	$2 \operatorname{N}_2 O(g) \longrightarrow 2 \operatorname{N}_2(g) + O_2(g)$ $3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{O}_3(g)$ $H_2 O(l) \longrightarrow H_2 O(s)$ $H_2 O(l) \longrightarrow H_2 O(g)$				
				32				