

5

6

How Carlsbad Cavern was Formed

Most of the caves people are familiar with (such as Mammoth Cave in Kentucky) were formed by rainwater slowly dissolving limestone. Water sinking through enlarged fractures and sinkholes eventually grew to become underground streams and rivers carving out complex cave systems. The caves of the Guadalupe Mountains were formed in a much different way.

Between 4 and 6 million years ago hydrogen-sulfide-rich (H_2S) waters began to migrate through fractures and faults in the Capitan Limestone. This water mixed with rainwater moving downward from the surface. When the two waters mixed, the H_2S combined with the oxygen carried by the rainwater and formed sulfuric acid (H_2SO_4). This acid dissolved the limestone along fractures and folds in the rock to form Carlsbad Cavern. This process left behind massive gypsum (CaSO₄) deposits, clay, and silt as evidence of how the cave was formed. With time, the active level dropped to form deeper cave passages.

http://www.nps.gov/cave/naturescience/cave.htm

Another chemical equilibrium involved in nature: Gypsum Formations

Gypsum = hydrated calcium sulfate, $CaSO_4 \cdot H_2O$ = insoluble in water

The giant **gypsum crystals** in Mexico's "Cueva de los Cristales" are a stunning natural wonder featuring crystals up to 11 metres long. Image accessed from http://www.webelements.com/nexus/search/ results/taxonomy:281 See Geology: April, 2007, v. 35, no. 4, where the crystals are featured on the cover.

8

TABLE 15.1 Some Common Acids			
Name	Occurrence/Uses		
Hydrochloric acid (HCl)	Metal cleaning; food preparation; ore refining; main component of stomach acid		
Sulfuric acid (H_2SO_4)	Fertilizer and explosives manufacturing; dye and glue production; automobile batteries; electroplating of copper		
Nitric acid (HNO ₃)	Fertilizer and explosives manufacturing; dye and glue production		
Acetic acid $(HC_2H_3O_2)$	Plastic and rubber manufacturing; food preservative; active component of vinegar		
Citric acid ($H_3C_6H_5O_3$)	Present in citrus fruits such as lemons and limes; used to adjust pH in foods and beverages		
Carbonic acid (H_2CO_3)	Found in carbonated beverages due to the reaction of carbon dioxide with water		
Hydrofluoric acid (HF)	Metal cleaning; glass frosting and etching		
Phosphoric acid (H ₃ PO ₄)	Fertilizer manufacture; biological buffering; preservative in beverages		
Copyright © 2008 Pearson Prentice Hall, Inc.			
	45		

Ka	Conjugate Acid	Conjugate Base	Kb
Very large	HClO ₄	ClO ₄ ⁻	Very small
Very large	HCl	Cl ⁻	Very small
Very large	HNO ₃	NO ₃ ⁻	Very small
	H ₃ O ⁺	H ₂ O	
$6.9 imes 10^{-4}$	HF	F ⁻	$1.4 imes10^{-11}$
1.8×10^{-5}	HC ₂ H ₃ O ₂	$C_2H_3O_2^-$	5.6×10^{-10}
$1.4 imes 10^{-5}$	$Al(H_2O)_6^{3+}$	Al(H ₂ O) ₅ (OH) ²⁺	$7.1 imes 10^{-10}$
$4.4 imes 10^{-7}$	H ₂ CO ₃	HCO ₃ ⁻	$2.3 imes 10^{-8}$
$2.8 imes 10^{-8}$	HCIO	ClO-	3.6×10^{-7}
$5.6 imes 10^{-10}$	NH4 ⁺	NH ₃	$1.8 imes 10^{-5}$
$4.7 imes 10^{-11}$	HCO3 ⁻	CO_3^{2-}	$2.1 imes 10^{-4}$
	H ₂ O	OH-	
Very small	C ₂ H ₅ OH	$C_2H_5O^-$	Very large
Very small	OH-	O ²⁻	Very large
Very small	H ₂	H-	Very large

TABLE 15.2 Common Bases			
Name	Occurrence/Uses		
Sodium hydroxide (NaOH) Potassium hydroxide (KOH) Sodium bicarbonate (NaHCO ₃) Sodium carbonate (Na ₂ CO ₃) Ammonia (NH ₃)	Petroleum processing; soap and plastic manufacturing Cotton processing; electroplating; soap production; batteries Antacid; ingredient of baking soda; source of CO_2 Manufacture of glass and soap; general cleanser; water softener Detergent; fertilizer and explosives manufacturing; synthetic fiber production		
Copyright © 2008 Pearson Prentice Hall, Inc.			
	49		

Determining pH of solutions – Cont.				
Similarly, for a S.B like $Ba(OH)_2$,				
Ionization equation:				
$\begin{array}{c} \textbf{Ba(OH)}_{2 (aq)} \xrightarrow{100 \%} \textbf{Ba}^{2+}_{(a)} \\ 0.100 \text{ M} \\ \text{this base} \end{array} \text{ produces} \\ Thus, [OH] = n \times [S.B.]_{ini} = 0.200 \end{array}$	 aq) + 2OH⁻ (aq) 2 x 0.100 M of hydroxide M 			
Initial [] of strong base; n = number of moles OH ⁻ per mole of S.B.	Recall: pH + pOH = 14.00			
and pOH = - log [OH ⁻] = - log (0.100) } pOH = 1.00	pH = 14.00 - 1.00 pH = 13.00			
	Basic! 61			

Caution with very dilute (< 10⁻⁷ M) solutions of S.A. or S.B. *Example*: The pH of 1 x 10⁻⁸ M HCl ≠ 8.0 The pH of 1 x 10⁻⁸ M NaOH ≠ 6.0. WHY?
These very dilute solutions are mostly H₂O.
Thus, the dissociation of water produces more H⁺ or OH⁻ (both = 10⁻⁷ M) than the S.A. or the S.B.
Bottomline: The pH of very dilute (< 10⁻⁷ M) solutions of S.A. or S.B. ≈ 7.0, the pH of pure water.