CHEM 142 Exam Review Guide CHAPTER 13: CHEMICAL KINETICS

Students must be able to accomplish the following in preparation for Exam 1

- 1. Differentiate between **kinetics** (rates of reaction) and **thermodynamics** (related to K_{eq} or simply K) See beginning lecture notes
- 2. Explain how each of the following factors affect the rate of a reaction: Refer to lecture notes
 - **Concentration of reactants**
 - **H** Temperature
 - ♣ Nature of reactants (state and type of reactants) rusting of iron; 3 phases involved
 - ♣ Presence of a catalyst
- 3. *Importance of kinetics:* Give examples of everyday life reactions that we want to speed up (faster rate) See lecture notes or think of your own examples
- 4. *Importance of kinetics:* Give examples of everyday life reactions that we want to slow down (faster rate) See lecture notes or think of your own examples
- 5. Express the **rate** of a given chemical reaction (hence the word **rate expression**). See lecture notes, Tro Section 13-2 and Problem Set 4

Example: Given the following balanced equation, express the rate of reaction with respect to SO₂.

 $2 \operatorname{SO}_2 \left(g \right) \ + \ \operatorname{O}_2 \left(g \right) \ \rightarrow \ 2 \operatorname{SO}_3 \left(g \right)$

Note: You are asked to write the **rate expression** w.r.t. **SO**₂, a reactant. Since there are 2 moles of SO₂ in the balanced equation, and knowing that reactants are used up (declining concentration with time)

Answer:

Rate =
$$\frac{-\Delta[SO_2]}{2\Delta t}$$

For more practice, work on Problems 25a and 26a, p. 607 (Tro).

- 6. On a molecular level, be able to explain *why the rate of a reaction decreases with time*. HINT: Look into chances of collisions between reactant molecules as the reaction progresses.
- 7. Explain the difference between **average rate** and **instantaneous rate** of a chemical reaction. See lecture notes or Section 13.2 for definitions.
- 8. Calculate the **average rate** from a given *concentration vs. time* data. See lecture notes and Problem Set 4 for sample calculations; also read Section 13.2 (Tro) and work on Problems 25b, 26b, 29a and 30a.
- 9. Calculate the **instantaneous rate** from a given plot of *concentration vs. time* data. See lecture notes and Problem Set 4 (the last question is on instantaneous rate calc based on Tro, Problem 32b, p. 608)
- 10. Be able to express the **rate law** for a given reaction with or without the order of reaction w.r.t. reactants. *Example* from Problem Set 4: Consider the following reaction:

 $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$

The rate law for this reaction is first order in H_2 and second order in NO. Write the <u>rate law</u>.

Analysis: 1^{st} order in H₂ means the second term of the equation will have $[H_2]^1$ or simply $[H_2]$; likewise, 2^{nd} order in NO equates to $[NO]^2$. These numbers have nothing to do with the coefficients in the balanced equation, unless you are writing rate expressions.

```
Answer: Rate = k [NO]^2 [H_2] NOTE: The order of reaction (e.q. 1<sup>st</sup> order, 2<sup>nd</sup> order) has nothing to do with the coefficients (number of moles) in the balanced equation.
```

Rate constant

- 11. Determine the **order of a reaction** from *initial rate vs. concentration* data. From this you can write the rate law for the given reaction. See lecture notes for sample calculations. I am also providing another example below.
- *Example:* Determine the <u>rate law</u> and the **rate constant**, **k**, for the following reaction using the data provided.

 $2 \ N_2O5(g) \ \rightarrow \ 4 \ NO_2(g) + O_2(g)$

Initial [N2O5] (M)	Initial Rate (M-1s-1)
0.093	4.84 x 10-4
0.186	9.67 x 10-4
0.745	38.67 x 10-4

Analysis: First, you must calculate the order of reaction w.r.t. the reactants. Since there is only one, you expect the general expression of rate law to be:

Rate = k $[N_2O_5]^m$ where m is the order of reaction w.r.t. the reactant N_2O_5

First you must determine the value of m using the data above. This can be done by inspection, i.e.

Initial [N2O5] (M)	Initial Rate (M-1s-1)
0.093	4.84×10^{-4} = rate 12 [2.1]
Doubling 0.093 this 0.186	$\frac{4.84 \times 10^{-4}}{9.67 \times 10^{-4}} = rate 12 doubles also$
0.745	$38.67 \times 10^{-4} = rate 3$
als Joubles 0.143	
Initial [N2O5] (M)	Initial Rate (M-1s-1)

IIIIIai L	$N_{205}(N_{1})$	Initial Kate (IVI-1S-1)	
10	0.093	$4.84 \times 10^{-4} = rate 1$	
(Quadruple)		$9.67 \times 10^{-4} = rate 2$ $38.67 \times 10^{-4} = rate 3$	
4× increase	0.745	38.67×10^{-4} = rate 3	4x, increase
increase a	lso increases	(initial) rate HX	also
· · · · · · · · · · · · · · · · · · ·			

A pattern like this (*nx* increase in reactant concentration also increases rate *nx* times, where n = 1, 2, 3...) indicates first order reaction w.r.t. the reactant. Thus, you can conclude that the reaction is first order w.r.t N_2O_5 , and the **rate law** is written as:

Rate = $k [N_2O_5]^1$ or simply **Rate** = $k [N_2O_5]$

In class, I showed you an alternative method of finding m, the order of reaction. The method of inspection is the quickest way to find m. The method I showed you uses simple algebra as shown below.

- Step 1: Pick 2 sets of experiment to compare. In the above example, I marked their corresponding rates as rate 1, rate 2, etc. to indicate the results from experiments 1, 2, etc.
 - \blacktriangleright Let's compare expts. 1 and 2, thus rates 1 and 2

Step 2: Write the rate law as ratio of the two experiments:

Write the rate law as ratio of the two experiments:

$$\frac{Rate 2}{Rate 1} = \frac{k [N_2O_5]_{2^{\prime}}}{k [N_2O_5]_{2^{\prime}}} \qquad \text{from expt. 2}$$

$$\frac{Rate 2}{Rate 1} = \frac{k [N_2O_5]_{2^{\prime}}}{k [N_2O_5]_{1^{\prime}}} \qquad \text{concentration from expt. 1}$$

$$\frac{Rate 2}{Rate 1} = \frac{([N_2O_5]_2)^m}{([N_2O_5]_1)^m} \qquad \text{from expt. 1}$$

Step 3: Calculate m, the order of reaction w.r.t. N₂O₅ reactant by substituting experimental data to the rate equation ratio above: \ m 5

$$\frac{\text{Rate 2}}{\text{Rate 1}} = \left(\frac{[N_2O_5]_2}{[2N_2O_5]_1}\right)$$

$$\frac{9.67 \times 10^{-4} \text{ M/s}}{4.84 \times 10^{-4} \text{ M/s}} = \left(\frac{0.186 \text{ M}}{0.093 \text{ M}}\right)^m$$

$$\frac{1.998}{2} = (2)^m$$

$$2 = 2^m \text{ So } m = 1 \text{ for the equation to be true}$$
Thus, the rate law is Rate = $k \text{ EN}_2O_57^{-1}$

Finally, to determine k, we can substitute any of the data from a given experiment to the rate law equation. Let's pick <u>data from experiment 2</u>:

Initial [N2O5] (M) Initial Rate (M-1s-1)

 $[N_2O_5] \longrightarrow 0.186$ from expt. 2 9.67 x 10-4 = rate 2 Since Rate = le [N205] k = Rate TN_0_7 $H: = \frac{Rate 2}{EN_2O_57} e_{xpt. a}$ $M = \frac{Rate 2}{EN_2O_57} e_{xpt. a}$ $M = \frac{9.67 \times 10^{-4} / M.s}{M.s}$ $M = \frac{9.67 \times 10^{-4} / M.s}{0.186 M}$ $M = \frac{0.186 M}{0.186 M}$ Note: Unit cancellation for le: $l_{R} = 5.20 \times 10^{-3} \text{ M}^2 \cdot \text{S}$ M·S rate consta Μ $= \frac{1}{M \cdot (M \cdot S)} = \frac{1}{M^2 \cdot S}$