Chapter 10 Chemistry of Natural Waters

1

Water Quality Parameters Definition: Water quality parameters are properties of water that affect aquatic life 1. Temperature (T) > Low T slows biological processes > High T can be fatal; lowers dissolved oxygen (DO) 2. Transparency to light – affects: > Food for higher forms of life > Growth of algae (more transparent, better growth) 3. Turbulence > Affects mixing and transport of nutrients and waste Example: Planktons depend upon water current for their own mobility

Water Quality Parameters - Cont.
4. Dissolved oxygen (DO)
O ₂ deficiency (very low DO) is fatal to fish, other aquatic animals
5. Biochemical oxygen demand (BOD)
BOD = the amount of O ₂ used up during biological decomposition of organic matter (OM)
High BOD + slow to replenish O_2 = unable to sustain life
6. Carbon dioxide (CO ₂)
Needed by algae for photosynthesis (& production of biomass)
Too much decomposition $\Rightarrow \uparrow CO_2$ levels $\Rightarrow free brock constraints constraints for the second seco$
דו

Water in Equilibrium with Solid Calcium Carbonate

Natural waters exposed to limestone are called **calcareous** [kal-kair-ee-uhs] **waters**. The dissolved CO₃²⁻ ion acts as a base, producing its bicarbonate and hydroxide ions in the water. These reactions that occur in the natural three-phase (air, water, rock) system are summarized below:

The reactions of the carbon dioxide - carbonate system are
summarized for convenience in Table 13-3.

TABLE 13-3	Reactions in the CO ₂ –Bicarbonate–Cart	onate System		
Reaction Number	Reaction	Equilibrium Constant	K Value at 25°C	
1	$H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$	K _{al} (H ₂ CO ₃)	4.5×10^{-7}	
2	$HCO_3^- \Longrightarrow H^+ + CO_3^{2-}$	K _{a2} (H ₂ CO ₃)	4.7×10^{-12}	
3	$CO_2(g) + H_2O(aq) \Longrightarrow H_2CO_3(aq)$	K _H	3.4×10^{-2}	
4	$CaCO_3(s) \Longrightarrow Ca^{2+} + CO_3^{2-}$	K _{sp}	4.6×10^{-9}	
5	$CO_3^{2-} + H_2O \Longrightarrow HCO_3^- + OH^-$	$K_{\rm b} ({\rm CO_3}^{2-})$	2.1×10^{-4}	
6	$\begin{array}{l} CaCO_3(s) + H_2O(aq) \\ \rightleftharpoons Ca^{2+} + HCO_3^- + OH^- \end{array}$			
7	$H^+ + OH^- \Longrightarrow H_2O(aq)$	$1/K_{\rm w}$	1.0×10^{14}	
8	$\begin{array}{l} CaCO_3(s) + CO_2(g) + H_2O(aq) \\ \rightleftharpoons Ca^{2+} + 2 HCO_3^{-} \end{array}$			
			36	

Basicity versus Alkalinity

- High basicity = high pH
- High alkalinity = excellent capacity to neutralize H⁺

Example: Compare 1 L each of 1.00 x 10^{-3} M NaOH and 0.100 M NaHCO₃.

Solution	рН	Alkalinity
1.00 x 10 ⁻³ M NaOH	11	1.00 x 10 ⁻³ M H+
0.100 M NaHCO ₃	8.34	0.100 M H+

The NaOH solution is more basic but has a lower alkalinity than the NaHCO₃ solution

Requires less acid (H⁺) to neutralize

39

FABLE 13-5 River Water Concentrations and Drinking Water Standards for lons						
	River Wat Concent	River Water Molar Concentration		Drinking Water Concentration in ppm		
	imy King			Maximum Recommended Concentration		
Ion	Average for World	Average for U.S.	Average U.S.	U.S.	Canada	
*HCO3 ⁻	9.2×10^{-4}	9.6×10^{-4}	60			
Ca ²⁺	3.8×10^{-4}	3.8×10^{-4}	15			
Mg ²⁺	1.6×10^{-4}	3.4×10^{-4}	8			
Na ⁺	3.0×10^{-4}	2.7×10^{-4}	6		200	
Cl ⁻	2.3×10^{-4}	2.2×10^{-4}	8	250	250	
SO4 ²⁻	1.1×10^{-4}	1.2×10^{-4}	12	250	500	
K ⁺	5.4×10^{-5}	5.9×10^{-5}	2			
F- 0	Cour se Smart	5.3×10^{-6}	0.1	0.8-2.4	1.5	
NO_3^-	1.4×10^{-5}					
Fe ³⁺	7.3×10^{-6}					

(Boca Raton, FL: Lewis Publishers).

Species	mg/kg or ppm	Species	mg/kg or ppm
Cl	19,350	HCO ₃ -	142
Na+	10,760	Br⁻	67
SO42-	2,710	BO ₄ ³⁻	4.5
Mg ²⁺	1,290	F-	1.3
Ca ²⁺	411	H_4SiO_4	0.5-10
K+	399	H+	10 ^{-8.35} M

References (aside from the ones cited with the slides)

1. Manahan, Stanley E. "Environmental Chemistry," (7th ed.) Boca Raton: Lewis, 1999.

2. C. Baird and M. Cann, *Environmental Chemistry*, Freeman and Co.: New York, 2005 (3rd ed.)

61