Chapter 3 EXPERIMENTAL ERRORS

Example: Determining the precision of a set of measurements The following data were obtained for the determination of iron in a vitamin tablet using flame atomic absorption spectrometry. Calculate the mean (\bar{x}) and the relative standard deviation (RSD). sample # ppm Fe 5.01 1 2 4.98 3 4.99 5.00 4 5 5.04 $\overline{x} = 5.00_4$ 10

			Do it	in Ex	cel!		
6) + (²¹ +);	;				Book
C	Hom	e Insert	Page La	yout Fo	rmulas	Data	Review
	otTable Tal		Clip Sh Art Illustrati	apes Smart4	art Colu	mn Line	Pie Ch
_	SUM	•	(• × ✓	<i>f</i> _∞ =ave	rage(B2:	B6)	
1	А	В	С	D	E	F	0
1		ppm Fe					
2		5.01					
3		4.98					
4		4.99					
5		5.00					
6		5.04					
7	Mean,	=average(B2:B6)				
8	Stdev, s						
-							

1	SUM A	₹ B	-		_			_			
-	А		Clipboard [©] Font [©] A SUM ▼ (○ X ✓ f _x =stdev(B2:B6)					•	()	<i>f</i> _x =100*	'(B8/B7
-			С	D	E		А	В	С	D	E
2		ppm Fe		_	_	1		ppm Fe			
2		5.01				2		5.01			
3		4.98				3		4.98			
4		4.99				4		4.99			
5		5.00				5		5.00			
6		5.04				6		5.04			
7	Mean,	5.00				7	Mean,	5.00			
8	=9	stdev(B2:B	6)			8	Stdev, s	0.02			
9						9	%RSD	0.46			
10						10					
						11	%RSD = 10	0*(s/mean)		
	or %	orted p RSD =	0.46 %	6 error.	Pretty	re		ible, isr	n't it?		

Accuracy is more difficult to measure than precision. *WHY*?

> The true or accepted value is not always available.

However, remember that the higher the precision, the greater is the probability of obtaining an accurate result

13

Scenario:

The presence of *dissolved copper* in drinking water is typically due to corrosion of household plumbing systems. Its levels in drinking water is regulated by the EPA because of its health effects, such as <u>gastrointestinal distress</u> and <u>liver</u> or <u>kidney</u> <u>damage</u>

The **maximum contaminant level** for **Cu** is **1.3 ppm** (or 1300 ppb)

(http://www.epa.gov/safewater/contaminants/index.html#mcls).

15

The maximum contaminant level for Cu is **1.3 ppm**. The following data were obtained from the analysis of water samples collected over a 5-day period.

Sample ID	Amount of Cu in mg/L	
Day 1	1.28	
Day 2	1.25	
Day 3	1.34	
Day 4	1.29	
Day 5	1.55	
Mean ppm	n Cu = 1.34	
Based on the <i>5-day</i> safe for drinking?	r mean copper lev	vels, is this water

				Con	fidence l	evel (%)		
– 1 =	Degrees of freedom	50	90	95	98	99	99.5	99.9
		1.000	6.314	12.706	31.821	63.657	127.32	636.61
	2	0.816	2.920	4.303	6.965	9.925	14.089	31.59
	3	0.765	2.353	3.182	4.541	5.841	7.453	12.92
	4	0.741	2.132	2.776	3.747	4.604	5.598	8.61
	5	0.727	2.015	2.571	3.365	4.032	4.773	6.86
	6	0.718	1.943	2.447	3.143	3.707	4.317	5.95
	7	0.711	1.895	2.365	2.998	3.500	4.029	5.40
	8	0.706	1.860	2.306	2.896	3.355	3.832	5.04
	9	0.703	1.833	2.262	2.821	3.250	3.690	4.78
	10	0.700	1.812	2.228	2.764	3.169	3.581	4.58
	15	0.691	1.753	2.131	2.602	2.947	3.252	4.07
	20	0.687	1.725	2.086	2.528	2.845	3.153	3.85
	25	0.684	1.708	2.060	2.485	2.787	3.078	3.72
	30	0.683	1.697	2.042	2.457	2.750	3.030	3.64
	40	0.681	1.684	2.021	2.423	2.704	2.971	3.55
	60	0.679	1.671	2.000	2.390	2.660	2.915	3.40
	120	0.677	1.658	1.980	2.358	2.617	2.860	3.3
	00	0.674	1.645	1.960	2.326	2.576	2.807	3.29

WOF	K:			
	0.12			
	0.16			
	0.17			
	0.20			
	0.11			
mean	0.15	(0.148)		
stdev	0.03	(0.028)		
deg. freedom	5.00	sqrt (n) =	2.4495	
t at 90 % CI	2.015			
t at 99 % CI	4.032			
CI (90%) =	0.148 +/- (2	2.015*0.02	28)/sqrt(6	
=	0.148 +/-	0.023		95 % chance that the true mean
=	0.15 +/- 0.0	2		 lies within the range 0.12 % to 0.18 % (of additive)
CI (99%) =	0.148 +/- (4	1.032*0.02	28)/2.449	
	0.148 +/-	0.046		99 % chance that the true mean
=	0.15 +/- 0.0)5		lies within the range 0.10 % to
				- 0.20 % (of additive)
				32

35

Case 2: Comparing two replicate measurements- Cont. Perform a t-test to determine if the result from Method B is significantly lower that that from Method A. Assume that each method consisted of 5 replicate measurements. Method A Method B x 32.4 31.8 0.8 1.1 s \triangleright Performing a t-test for 2 sets of data consisting of n₁ and n₂ measurements: **Step 1:** Calculate a value of *t* with the formula: $t_{calc} = \frac{|\overline{x}_1 - \overline{x}_2|}{s_{pooled}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$ Calc. of t: 36

Grubb's Test for an Outlier							
<i>Outlier</i> = a data point that is far from other points							
Given twelve re	esults for deter	mining the m	nass % Zn in galvanized nail:				
	Mass % Zn	Mass % Zn					
	10.2	10.0					
	10.8	9.2					
	11.6	11.3					
	9.9	9.5					
	9.4	10.6					
Outlier?	→ 7.8	11.6					
	reading 7.8 be n't simply disca						
	e can perform a e discarded	a Grubbs te	st to determine if an outlier				

Number of	G	
observations	(95% confidence)	> Since G_{calc} (2.137) < $G_{critical}$
4	1.463	(2.285 when n=12), we
5	1.672	cannot <u>discard</u> the outlier 7.8.
6	1.822	
7	1.938	\succ There is > 5% chance that the
8	2.032	value 7.8 is a member of the
9	2.110	
10	2.176	same population as the other
11	2.234	measurements
12	2.285 2.409	
15 20	2.557	\succ HOWEVER, if the value 7.8 is
> G _{table} , the value in quest confidence, Values in this t as recommended by ASTM	tandard Practice for Dealing	due to a <u>faulty procedure</u> (e.g. a spill during the expt.), then it must be <u>discarded</u> .

Practice problems

Chapter 4 Problems (pp. 93-95)

Gaussian distribution: 1 and 3 Confidence intervals, t-test and Grubbs test: 8, 9, 12, 13, 16, 19, 21, 22 and 23.

43