Other Common Analytical Terms

1. **Precision** refers to reproducibility of repetitive measurements of equivalent analyte solutions (e.g. aliquots)

 - Often expressed as (absolute) **standard deviation**, \(s \),
 - or **relative standard deviation**, \(\text{RSD} \)

vs. **Accuracy**, which indicates *how close* the measured analyte concentration is to the true analyte concentration in the sample.

- Often expressed as **bias** (by comparison with standard reference materials)
Accuracy vs. Precision

Neither	A, but not P	A & P	P, but not A
- Results close together and close to true value
- Results close together, but far from true value

- Good precision does not assure accuracy
- However, the higher the precision, the greater is the probability of obtaining the true value.
 - It helps to get highly reproducible (highly precise) replicate measurements

Analytical Terms – Cont.

2. Sensitivity *(of an instrument)* – The smallest amount of a substance that can be detected by an instrument
Illustration of instrument sensitivity:

What is the sensitivity of each balance?

Top loading electronic balance with 0.01 g sensitivity and 1810 g capacity.

Digital analytical balance with 0.0001 g sensitivity (or 0.1 mg) and 100 g capacity.

More sensitive

Images available at http://www.acmescales.com/

This picture shows that errors, including experimental errors, are real.
The results are back from the lab. *Now what do we do?*

Data handling and error analysis:

Accuracy = closeness of result to the *accepted* or true value; measured with:

- **bias**

Precision refers to the reproducibility of results; measured with:

- **standard deviation (s)**, or
- **relative standard deviation, RSD**

Bias: A measure of accuracy

Bias is a quantitative term describing the difference between the measured quantity (or its mean) and its true or known value.

Bias = measured value – known value
Ways of expressing precision

1. (Absolute) standard deviation, s

\[s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} \]

where x = individual measurements; \bar{x} = mean of all measurements and n = total number of measurements

2. Relative standard deviation, RSD

\[\text{RSD} = \frac{s}{\bar{x}} \]

Example: Determining the precision of a set of measurements

The following data were obtained for the determination of iron in a vitamin tablet using flame atomic absorption spectrometry. Calculate the mean (\bar{x}) and the relative standard deviation (RSD).

<table>
<thead>
<tr>
<th>sample #</th>
<th>ppm Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.01</td>
</tr>
<tr>
<td>2</td>
<td>4.98</td>
</tr>
<tr>
<td>3</td>
<td>4.99</td>
</tr>
<tr>
<td>4</td>
<td>5.00</td>
</tr>
<tr>
<td>5</td>
<td>5.04</td>
</tr>
</tbody>
</table>

$\bar{x} = 5.004$
Reported ppm Fe: 5.00 ± 0.02 ppm
or $\%\text{RSD} = 0.46\%$ error. Pretty reproducible, isn't it?

A very precise measurement!
Accuracy is more difficult to measure than precision. *WHY*?

- The *true* or *accepted value* is not always available.

- However, remember that the *higher the precision*, the *greater is the probability of obtaining an accurate result*.

Chapter 4

STATISTICS
Scenario:

The presence of dissolved copper in drinking water is typically due to corrosion of household plumbing systems. Its levels in drinking water is regulated by the EPA because of its health effects, such as gastrointestinal distress and liver or kidney damage.

The maximum contaminant level for Cu is 1.3 ppm (or 1300 ppb).

(http://www.epa.gov/safewater/contaminants/index.html#mcls).

The following data were obtained from the analysis of water samples collected over a 5-day period.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Amount of Cu in mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1.28</td>
</tr>
<tr>
<td>Day 2</td>
<td>1.25</td>
</tr>
<tr>
<td>Day 3</td>
<td>1.34</td>
</tr>
<tr>
<td>Day 4</td>
<td>1.29</td>
</tr>
<tr>
<td>Day 5</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Mean ppm Cu = 1.34

Based on the 5-day mean copper levels, is this water safe for drinking?
Statistics in Chemistry

Measurements in chemistry

- Often *variable*
 - Difficult to make a conclusion with certainty

Example: See problem in previous slide

Questions:
(1) Is water from the source safe to drink?
(2) Is the last reading (day 5) off?

- Hard to say
- Need a tool to decide whether the mean ppb Cu is significantly higher than the limit, or to decide whether or not to *discard* the last result

Importance of Statistics in Chemistry

- Gives us a *tool to accept or reject conclusions*
 - High *probability* of being correct = ACCEPT
 - Low *probability* of being correct = REJECT
Distribution of Experimental Results

Scenario: Let's say the analysis of the same sample of water for Cu was repeated 100 times by atomic absorption spectroscopy. Let’s also limit errors to random error.

Question: How would the results look like?

- Results will tend to cluster around the mean value for Cu levels
- Gaussian distribution (Figure 4-1, p. 69)
 - Increase repetitions, smoother curve

Gaussian Distribution

- Bell-shaped
- Normal distribution of variation in expt'l data

Figure 4-1, p. 69. Bar graph and Gaussian curve for lifetimes of hypothetical light bulbs
Gaussian Distribution (Cont.)

In real life, we repeat experiments **3-4 times**, not 100 times!

Small set of results

Estimate statistical parameters

Describes

Large set of results

Allows estimation of statistical behavior from a small number of repetitions (analysis)

Characteristics of the Gaussian Curve

(Smooth orange line)

1. **Mean, \(\bar{x} \) (also called average)**

 - Sum of measured values, \(x_i \), divided by the number of measurements, \(n \)

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}
\]
Characteristics of the Gaussian Curve – Cont.

2. Standard deviation, \(s \)

- Measures how closely the data are clustered about the mean
 \[
 S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}
 \]

- Measures the width of the Gaussian curve
 - **Smaller s, narrower curve** – Fig. 4-2, p. 54
 - **Smaller variability**
 - **Individual data are close together**

Gaussian curve and standard deviation – See table on p. 57

Note that sigma, \(\sigma \), is used instead of \(s \) for standard deviation of larger sets of data

<table>
<thead>
<tr>
<th>Range</th>
<th>% of Measurements</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu \pm 1\sigma)</td>
<td>68.3</td>
<td>More than 2/3 (68 %) of measurements are within 1 std. dev. from the mean</td>
</tr>
<tr>
<td>(\mu \pm 2\sigma)</td>
<td>95.5</td>
<td>Over 95 % of measurements are within 2 std. dev. from the mean</td>
</tr>
<tr>
<td>(\mu \pm 3\sigma)</td>
<td>99.7</td>
<td>Almost 100 % of measurements are within 3 std. dev. from the mean</td>
</tr>
</tbody>
</table>
Gaussian curve and standard deviation – Cont.

Practical significance

- Comparing two methods (and two \bar{x}) to measure % Fe in ore

<table>
<thead>
<tr>
<th></th>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>32.4</td>
<td>31.8</td>
</tr>
<tr>
<td>s</td>
<td>0.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Interpretation of results

- About 68% of measurements from Method A will fall between 31.6 - 33.2 (vs. 30.7 - 32.9 from Method B)

- 95.5% of measurements from Method A will fall between 30.8 - 34.0 (vs. 29.6 - 34.0 from Method B)
Parameters for Finite vs. Infinite Set of Data

<table>
<thead>
<tr>
<th></th>
<th>Finite set</th>
<th>Infinite set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample mean</td>
<td>\bar{x}</td>
<td>Population mean, μ</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>s</td>
<td>Population std. dev., σ</td>
</tr>
</tbody>
</table>

NOTE: μ and σ cannot be measured, but …

- … as the number of measurements increases
- values of \bar{x} and s approach μ and σ

Other Statistical Parameters

- **Degrees of freedom, $n - 1$**
 - Used in the calc. of s

- **Variance, s^2 (or σ^2)**
 - Squared std. dev.

- **Relative standard deviation, RSD** (or the coefficient of variation)
 - Std. dev. expressed as percentage of the mean

- **Confidence interval**
 - An expression which states that the true mean, μ, is likely to lie within a certain distance from the measured mean, \bar{x}
Confidence Intervals

- An expression which states that the true mean, μ, is likely to lie within a certain distance from the measured mean, \bar{x}

Confidence interval:

$$
\mu = \bar{x} \pm \frac{ts}{\sqrt{n}}
$$

Where t is the Student's t, taken from Table 4-2, p. 73

- Allows us to determine μ from the measured mean, \bar{x}, and std. deviation, s

Exercise: (Prob. 4-11, p. 75) The % of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20 and 0.11 %. Find the 90 % and 99 % confidence intervals for the percentage of the additive.

Answers: 90 %: 0.15 ± 0.03; 99 %: 0.15 ± 0.05
Table 4-2 | Values of Student’s t

<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>50</th>
<th>90</th>
<th>95</th>
<th>98</th>
<th>99</th>
<th>99.5</th>
<th>99.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
<td>127.32</td>
<td>636.619</td>
</tr>
<tr>
<td>2</td>
<td>0.816</td>
<td>2.920</td>
<td>4.303</td>
<td>6.965</td>
<td>9.925</td>
<td>14.089</td>
<td>31.598</td>
</tr>
<tr>
<td>3</td>
<td>0.765</td>
<td>2.353</td>
<td>3.182</td>
<td>4.541</td>
<td>5.841</td>
<td>7.453</td>
<td>12.924</td>
</tr>
<tr>
<td>4</td>
<td>0.741</td>
<td>2.132</td>
<td>2.776</td>
<td>3.747</td>
<td>4.604</td>
<td>5.598</td>
<td>8.610</td>
</tr>
<tr>
<td>5</td>
<td>0.727</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td>4.032</td>
<td>4.773</td>
<td>6.869</td>
</tr>
<tr>
<td>6</td>
<td>0.718</td>
<td>1.943</td>
<td>2.447</td>
<td>3.143</td>
<td>3.707</td>
<td>4.317</td>
<td>5.959</td>
</tr>
<tr>
<td>7</td>
<td>0.711</td>
<td>1.895</td>
<td>2.365</td>
<td>2.998</td>
<td>3.500</td>
<td>4.029</td>
<td>5.408</td>
</tr>
<tr>
<td>8</td>
<td>0.706</td>
<td>1.860</td>
<td>2.306</td>
<td>2.896</td>
<td>3.355</td>
<td>3.832</td>
<td>5.041</td>
</tr>
<tr>
<td>9</td>
<td>0.703</td>
<td>1.833</td>
<td>2.262</td>
<td>2.821</td>
<td>3.250</td>
<td>3.690</td>
<td>4.781</td>
</tr>
<tr>
<td>10</td>
<td>0.700</td>
<td>1.812</td>
<td>2.228</td>
<td>2.764</td>
<td>3.169</td>
<td>3.581</td>
<td>4.587</td>
</tr>
<tr>
<td>15</td>
<td>0.691</td>
<td>1.753</td>
<td>2.131</td>
<td>2.602</td>
<td>2.947</td>
<td>3.252</td>
<td>4.073</td>
</tr>
<tr>
<td>20</td>
<td>0.687</td>
<td>1.725</td>
<td>2.086</td>
<td>2.528</td>
<td>2.845</td>
<td>3.153</td>
<td>3.850</td>
</tr>
<tr>
<td>25</td>
<td>0.684</td>
<td>1.708</td>
<td>2.060</td>
<td>2.485</td>
<td>2.787</td>
<td>3.078</td>
<td>3.725</td>
</tr>
<tr>
<td>30</td>
<td>0.683</td>
<td>1.697</td>
<td>2.042</td>
<td>2.457</td>
<td>2.750</td>
<td>3.030</td>
<td>3.646</td>
</tr>
<tr>
<td>40</td>
<td>0.681</td>
<td>1.684</td>
<td>2.021</td>
<td>2.423</td>
<td>2.704</td>
<td>2.971</td>
<td>3.551</td>
</tr>
<tr>
<td>60</td>
<td>0.679</td>
<td>1.671</td>
<td>2.000</td>
<td>2.390</td>
<td>2.660</td>
<td>2.915</td>
<td>3.460</td>
</tr>
<tr>
<td>120</td>
<td>0.677</td>
<td>1.658</td>
<td>1.980</td>
<td>2.358</td>
<td>2.617</td>
<td>2.860</td>
<td>3.373</td>
</tr>
<tr>
<td>∞</td>
<td>0.674</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>2.576</td>
<td>2.807</td>
<td>3.291</td>
</tr>
</tbody>
</table>

WORK:

Mean: 0.15

Standard deviation: 0.03

Degrees of freedom: 5

\[\sqrt{n} = 2.4495 \]

\[t_{90\%} = 2.015 \]

\[t_{99\%} = 4.032 \]

\[CI_{(90\%)} = 0.148 \pm (2.015 \times 0.028)/\sqrt{6} \]

\[CI_{(99\%)} = 0.148 \pm (4.032 \times 0.028)/2.449 | \]

95% chance that the true mean lies within the range 0.12% to 0.18% (of additive)

99% chance that the true mean lies within the range 0.10% to 0.20% (of additive)
Confidence Intervals - Cont.

- A closer look at the meaning of confidence interval

50% C.I: There is a 50% chance that true mean, μ, lies between 12.4 to 12.7% carbs

90% C.I: There is a 90% chance that true mean, μ, lies between 12.1 to 12.9% carbs

Comparing Means with Student’s t

- Allows for comparison of two sets of measurements (e.g. using 2 different methods) to decide whether or not they are the same

- Recall the following results for measuring % Fe in ore using two different methods

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>32.4</td>
</tr>
<tr>
<td>s</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Are the results from the 2 methods different? (i.e. Are the two means different?)
 - Perform a t-test
The Student’s t

Three cases:

1. **Comparing a measured result with a “known” value**

 Example: You purchased a standard solution of Fe as 1000 ppm Fe (± 5 ppm). You are testing a new analytical method for Fe analysis to see whether it can reproduce the known value. A t-test can be used to compare the mean of your measurements with the known value of 1000 ± 5 ppm Fe.

 ➢ Read p. 76 for more information on case 1

2. **Comparing two replicate measurements**

 ➢ Use a t-test to decide whether 2 sets of replicate measurements give “the same” or “different” results, within a stated confidence level

3. **Case 2: Comparing two replicate measurements** – Cont.

 ➢ Perform a t-test to determine if the result from Method B is significantly lower than that from Method A. Assume that each method consisted of 5 replicate measurements.

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>32.4</td>
</tr>
<tr>
<td>s</td>
<td>0.8</td>
</tr>
</tbody>
</table>

 ➢ Performing a t-test for 2 sets of data consisting of n₁ and n₂ measurements:

 Step 1: Calculate a value of t with the formula:

 \[
 t_{\text{calc}} = \frac{|\bar{x}_1 - \bar{x}_2|}{s_{\text{pooled}}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}
 \]
where

\[
 s_{\text{pooled}} = \sqrt{\frac{s_1^2(n_1-1) + s_2^2(n_2-1)}{n_1 + n_2 - 2}}
\]

NOTE: \(s_{\text{pooled}}\) is a *pooled* standard deviation from both sets of data.

Step 2: Compare \(t_{\text{calc}}\) with tabulated \(t\) (Table 4-2) for \(n_1 + n_2 - 2\) degrees of freedom.

- If \(t_{\text{calc}}\) is greater than \(t_{\text{table}}\) at the 95 % confidence level, the two results are considered to be different.

Case 2 – Cont.

Exercise: Determine if the two means from the measurements below are significantly different. Assume that each method consisted of 5 replicate measurements.

<table>
<thead>
<tr>
<th></th>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>32.4</td>
<td>31.8</td>
</tr>
<tr>
<td>(s)</td>
<td>0.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Can be performed with Excel (Case 2 only) – read Section 4-5, p. 82, *"t tests with a spreadsheet"*
3. Comparing individual differences (Paired t Test)

- Two different methods are used to make single measurements on several different samples (NOTE: There are no replicate measurements)
- Answers the question: Is method A systematically different from method B?
- Not as commonly used in chem labs as Case 2
- For more information on Case 3, read p. 78

Grubb’s Test for an Outlier

Outlier = a data point that is far from other points

Given twelve results for determining the mass % Zn in galvanized nail:

<table>
<thead>
<tr>
<th>Mass % Zn</th>
<th>Mass % Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>10.0</td>
</tr>
<tr>
<td>10.8</td>
<td>9.2</td>
</tr>
<tr>
<td>11.6</td>
<td>11.3</td>
</tr>
<tr>
<td>9.9</td>
<td>9.5</td>
</tr>
<tr>
<td>9.4</td>
<td>10.6</td>
</tr>
<tr>
<td>7.8</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Q. Should the reading 7.8 be discarded?
- We can’t simply discard bad data
- But we can perform a **Grubbs test** to determine if an outlier can be discarded
Grubbs test for outliers

- Limited to at least 4 repetitions/replicates
- Calculated from the mean (\(\bar{x}\)) and standard deviation (s) of the complete data set using the equation:

\[
G_{\text{calculated}} = \frac{|\text{questionable value} - \bar{x}|}{s}
\]

- If \(G_{\text{calc}} > G_{\text{critical}}\) discard the outlier. Otherwise, retain it.

Table 4-5, p. 83

Calculation:
\[
\bar{x} = 10.16; \quad s = 1.11; \quad \text{outlier} = 7.9
\]

\[
G_{\text{calc}} = \frac{|7.8 - 10.16|}{1.11} = 2.13
\]

Since \(G_{\text{calc}} (2.137) < G_{\text{critical}} (2.285\text{ when }n=12)\), we cannot discard the outlier 7.8.

- There is > 5% chance that the value 7.8 is a member of the same population as the other measurements
- HOWEVER, if the value 7.8 is due to a faulty procedure (e.g. a spill during the expt.), then it must be discarded.
Practice problems

Chapter 4 Problems (pp. 93-95)
Gaussian distribution: 1 and 3
Confidence intervals, t-test and Grubbs test: 8, 9, 12, 13, 16, 19, 21, 22 and 23.