Chapter 8: Monoprotic Acid-Base Equilibria

Chapter 6: Strong acids (SA) and strong bases (SB) ionize completely in water (very large K)

 \succ [H⁺] ions produced equals [S.A.]

Example: What is the pH of 0.050 M HCl solution?

- > HCl is S.A. so [HCl] = [H⁺]. Thus, pH = $-\log [H^+] = -\log (0.050); pH = 1.30$
- > Similarly, $[OH^-]$ in solution will be equal to [S.B.] x number OH^- per formula unit

Challenge: What is the pH of 1.0 x 10⁻⁸ M HCl? What is the pH of 1.0 x 10⁻⁸ M NaOH?

• pH = 8 for a 10^{-8} M acid???

• pH = 6 for a 10^{-8} M base???

We are adding an acid to water (at a pH of 7) and then saying that the solution becomes more basic?

✤ We neglected the dissociation of water!

FIGURE 8-1 Calculated pH as a function of concentration of strong acid or strong base in water.

Harris, Quantitative Chemical Analysis, 8e © 2011 W. H. Freeman

Summary: pH calculations of strong acids and strong bases

- 1. At relatively high [S.A] or [S.B.], i.e. $\geq 10^{-6}$ M, pH is calculated from [S.A.] or [S.B.]
- 2. In very dilute [S.A] or [S.B.], i.e. $\leq 10^{-8}$ M, dissociation of water is more important, so the pH is 7.

Question: How do we know if a given acid is strong or weak?

▶ Know the 6 S.A. and six S.B. by heart

Weak Acids and Weak Bases

- Weak acids (HA) and weak bases (B) *do not dissociate completely*.
- > An *equilibrium exists* between reactants and products
- The equilibrium lies to the left (K_a for a weak acid is < 1) => mostly HA or B in solution

The dissociation (ionization) of a weak acid, HA, in water:

K_a, the acid dissociation constant, can be written as:

$$K_a = \frac{[A^-] [H_3O^+]}{[HA]}$$

Similarly, the *hydrolysis (ionization) of a weak base*, **B**, in water can be written as:

$$\begin{array}{cccc} & & & & & \\ & & & & \\ B_{(aq)} & + & H_2O_{(l)} & & & \\ & & & \\ Weak \ base & & & \\ (H^+ \ acceptor) & & & \\ & & & & \\ & & & \\ & & & \\ (protonated) & \\ \end{array}$$

K_b, the base hydrolysis constant, can be written as:

$$\mathbf{K}_{\mathbf{b}} = \frac{[\mathbf{B}\mathbf{H}^+] [\mathbf{O}\mathbf{H}^-]}{[\mathbf{B}]}$$

Understanding Appendix G: K_a of weak acids

(1) Acids are written in their fully protonated form (column 2)

(2) Acidic H's are indicated in bold

Example: There is only one acidic H in acetic acid, hence it is written as:

Remember: Appendix G is a table of weak acids, not bases!

- (3) The *chemical names* (alphabetized; Column 1) pertain to the *electrically neutral species*, and
- (4) Bases are <u>derived</u> from their conjugate acids; Their K_b is derived from K_a .

Example: What is the pH of 0.050 M ammonia?

- > At this point, you should know that ammonia is a base
- ▶ Using Appendix G, you find ammonia on the first page with the following entry:

Acid Dissociation Constants

Name	Structure	pK _a	K _a
2-Methylaniline (o-toluidine)	CH ₃	4.447	3.57×10^{-5}
4-Methylaniline (p-toluidine)	$CH_3 \rightarrow O \rightarrow NH_3$	5.080	8.32×10^{-6}
2-Methylaniline (o-toluidine)	CH3 *NH3	4.447	3.57×10^{-5}
4-Methylaniline (p-toluidine)	CH3-O-NH3	5.080	8.32×10^{-6}

Exercise: Using part of App. G above:

(a) draw the structure of 4-methylaniline.

(b) Is alanine an acid or a base?

(c) Draw the dissociation of 4-methylaniline and write the corresponding K

(K_a if acid or K_b if base) expression.

Q. If we are dealing with a base, how do find its K_b ? (App. G only gives K_a)

Consider then two reactions: The *dissociation of a weak acid, HA*, and *hydrolysis of its conjugate base, A-*

Since $H_3O^+ = H_2O + H^+$, the equation above reduces to $H_2O \rightleftharpoons H^+ + OH^-$ What is the equilibrium constant for this reaction?

$$\begin{array}{c} \mathbf{K}_{w} \\ \mathbf{H}_{2}\mathbf{O} \end{array} \overset{\mathbf{K}_{w}}{\rightleftharpoons} \mathbf{H}^{+} + \mathbf{O}\mathbf{H}^{-} \qquad or \qquad \mathbf{2}\mathbf{H}_{2}\mathbf{O} \end{array} \overset{\mathbf{K}_{w}}{\rightleftharpoons} \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{O}\mathbf{H}^{-}$$

Since we added 2 equations, K_w is also equal to:

$$K_{W} = K_{a} \times K_{b}$$

$$K_{W} = \frac{[A^{-}] [H_{3}O^{+}]}{[HA]} \times \frac{[HA] [OH^{-}]}{[A^{-}]}$$

$$K_{W} = [H_{3}O^{+}] \times [OH^{-}] = 1.00 \times 10^{-14} \text{ at } 25 \text{ }^{0}\text{C}$$
Thus,
$$K_{W} = K_{a} \times K_{b}$$
at 25 °C
$$1.00 \times 10^{-14} = K_{a} \times K_{b}$$

Types of Acids and Bases

Acids and bases can be classified as electrically neutral or charges species (1) <u>Electrically neutral</u> species – *Examples: Acids*: All 6 strong acids, HC₂H₃O₂ (acetic), H₂CO₃ (carbonic) *Bases*: All 6 strong bases, NH₃, CH₃NH₂ (methyl amine)

(2) **Electrically charged** species – *Examples:*

Acids: H₂PO₄⁻, HSO₄⁻, HCO₃⁻ (from polyprotic acids; each has at least 1 acidic H left); NH₄⁺ (conj. acid of NH₃)
Bases: C₂H₃O₂⁻, PO₄⁻³, SO₄⁻², CO₃⁻² H₂PO₄⁻, HSO₄⁻, HCO₃⁻ (conj. bases of acids)

Some species can act as an acid or a base. These substances are called <u>amphoteric</u>. *Example*: $H_2PO_4^-$, HSO_4^- , HCO_3^- are all amphoteric

Exercise: Write the equilibria involved when HCO_3^- acts as (a) an acid and (b) a base.

Acid dissociation: $HCO_3^- + H_2O \iff CO_3^{-2} + H_3O^+$ Acid Conj. base Base hydrolysis: $HCO_3^- + H_2O \iff H_2CO_3 + OH^-$ Base CO_3^- + CO_3^- + CO_3^- + CO_3^- + CO_3^-

Weak Acid Equilibria and pH Calculations

- *Example*: Calculate $[H_3O^+]$ and pH of 0.10 M aqueous solution of hypochlorous acid $(K_a = 3.5 \times 10^{-8})$?
 - Note that K_a is a very small number (i.e. HOCl is a very weak acid). To begin the problem, write down the equilibrium involved:

$$K_a$$

HOCl + H₂O \iff H₃O⁺ + OCl

Since HOCl is a weak acid, only a fraction of the 0.10 M solution will dissociate to form x M of OCl⁻, i.e. we can set up our ICE table:

			Ka			
	HOCI +	H ₂ O	\rightleftharpoons	H_3O^+	+	<u>OCI</u>
I:	0.10			0		0
C :	-x			+x		+x
E:	(0.10 - x)			x		\underline{x}

The K_a expression is:

$$K_a = \frac{[OC1^-] [H_3O^+]}{[HOC1]} = \frac{(x)(x)}{(0.10 - x)}$$

$$3.5 \ge 10^{-8} = \frac{x^2}{(0.10 - x)}$$

Assuming x << 0.10 (since K_a is very small) and solving for x, we get:

x = $5.9_2 \times 10^{-5} \text{ M}$ Q. What does x represent? x = $[\mathbf{H}_3\mathbf{O}^+] = 5.9_2 \times 10^{-5} \text{ M} = [\text{OCl}^-]$

Since $5.9 \ge 10^{-5} \ll 0.10$ our assumption is valid. We calculate pH as:

$$pH = -\log [H_3O^+] = -\log (5.9_2 \times 10^{-5})$$

$$pH = 4.23$$

> If HOCl dissociates by an x amount, its actual concentration is not 0.10 M, right?

> The given concentration of HOCl, 0.10 M, is called its formal concentration.

Formal concentration, F (or **formality**), refers to the *total number of moles* of a compound dissolved *per liter of solution*, regardless of the number of species it forms upon dissociation.

Formality, F

Accounts for all forms of a species

Ex. Forms of H_2CO_3 in solution = H_2CO_3 , HCO_3^- and CO_3^{-2-}

> Thus, $F_{H2CO3} = [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{2-1}]$

Thus, for a weak monoprotic acid, HA, at equilibrium:

$$HA + H_2O \rightleftharpoons^{K_a} H_3O^+ + A^-$$
E: $(F_{HA} - x)$ $x \quad x$
 $K_a = \frac{x^2}{(F_{HA} - x)}$ and $pH = -\log x$

Exercise: Calculate the pH of a 1.50×10^{-2} M formic acid, HCO₂H. (pK_a = 3.745). *HINT*: You must first determine K_a from pK_a. *How*?

Answer: pH = 2.808

Weak Acid Equilibria: Fraction of Dissociation

The *fraction of dissociation*, α (*Greek: alpha*), of a weak acid HA refers to the fraction of HA in the dissociated form A⁻, i.e.

$$\boldsymbol{\alpha}_{\text{HA}} = \frac{[\text{A}^{-}]}{[\text{HA}] + [\text{A}^{-}]} \qquad \text{Thus,} \quad \boldsymbol{\alpha}_{\text{HA}} = \frac{\text{X}}{\text{F}_{\text{HA}}}$$
$$= \text{F}_{\text{HA}}$$

Exercise: You calculated the pH of a 1.50×10^{-2} M formic acid, HCO₂H, in the previous exercise. What fraction of formic acid in this solution has dissociated?

Answer: $\alpha_{HA} = 0.10$ or 10 % dissociated

Fraction of dissociation:

Weak Base Equilibria and *pH Calculations*

For a monobasic species, B, the *hydrolysis equation* is:

	\mathbf{B} + H_2O Weak base (\mathbf{H}^+ acceptor)	$\begin{array}{c} \mathbf{K}_{\mathbf{b}} \\ \longleftrightarrow & \mathbf{B}\mathbf{H}^{+} & + \\ \mathbf{Conj. \ acid} \end{array}$	OH
I: C: E:	$F_{\rm B} - y$ $(F_{\rm B} - y)$	$0 + y \\ y$	0 + y y

 $K_{\rm b}$ and pH can be expressed as:

$$K_b = \frac{y^2}{(F_B - y)}$$
 and $pH = 14.00 - pOH = 14.00 - (-log [OH-])$
or $pH = 14.00 - log (y)$

Exercise: Calculate the pH and fraction of association of 1.5×10^{-1} M ethylamine.

HINT: You must first recognize that ethylamine is a base.

[NOTE: Amines are organic bases. Their names end in -ine]

From Appendix G

		Ionic strength $(\mu) = 0$		
Name	Structure	$\mathbf{p}K_{\mathbf{a}}$	Ka	
Ethylamine	$CH_3CH_2NH_3^+$	10.673	2.12×10^{-11}	

$$RNH_{2} + H_{2}O \Leftrightarrow RNH_{3}^{+} + OH^{-}$$

$$0.15 - y \qquad y \qquad y$$

$$K_{b} = \frac{y^{2}}{F - y} \qquad \frac{K_{w}}{K_{a}} = \frac{y^{2}}{0.15 - y}$$

Relative strengths of acids/bases

- The stronger the acid the weaker its conjugate base; the stronger the base the weaker its conjugate acid. How?
- If K_a is large in the forward direction, the reverse reaction will have a low K

Q. Which is a stronger base, NH_3 or $H_2PO_4^-$? Which is a stronger acid, NH_4^+ or $H_2PO_4^-$? *Answer:* NH_3 is a stronger base; $H_2PO_4^-$ is a stronger acid than NH_4^+ .

SALTS

The term *salt* refers to the *ionic compound* produced from acid-base reaction.

- Q. What is the pH of an aqueous solution of a salt?
 - The anion or the cation of a salt, or both, can react with water (= hydrolysis)
 - > The **pH of the salt** depends on the <u>strengths</u> of the original acids and bases

Acid	Base	Salt pH	Example of salt
Strong	Strong	7 (Neutral)	NaCl, KNO ₃ , CaBr ₂
Weak	Strong	> 7 (Basic)	Na ₂ CO ₃ , K ₃ PO ₄
Strong	Weak	< 7 (Acidic)	NH ₄ Cl, CH ₃ NH ₃ Br
Weak	Weak	Depends on which is stronger	NH ₄ ClO, (NH ₄) ₂ CO ₃

Exercise: Show that Na_2CO_3 hydrolyzes in water to form a <u>basic</u> solution.

Solution: First, recognize that Na_2CO_3 in water produces (Na^+) and (CO_3^2)

From S.B; does not react with water = *spectator ion*, **S.I.**

Will hydrolyze; acts as W.B.

Hydrolysis of CO_3^{2-}

 $\operatorname{CO_3}^{2-}$ + $\operatorname{H_2O} \longleftrightarrow \operatorname{HCO_3}^{-}$ + $\operatorname{OH}_{\operatorname{Gasic!}}^{-}$ Basic!

Exercise: Show that ammonium chloride hydrolyzes in water to form an <u>acidic</u> solution.

NH₄Cl
$$(aq)$$
 NH₄ and Cl S.I.
W.A.
Hydrolyzes to
form H⁺ = acidic!

$NH_4^+ + H_2O \iff NH_3 + H_3O^+$

Acidic!

Practice: *Problem 8-20.* Find the pH of 0.050 M NaCN. *What constant do you need?* K_a ? K_b ? *What kind of species (acidic, basic or neutral) are produced in solution?*

BUFFERS

A *buffer* solution resists drastic changes in pH when a <u>small amount</u> of acid or base is added, or when diluted.

Composition of a buffer:

- A buffer consists of a weak acid and its conjugate base (more common), or:
- ➤ a weak base and its conjugate acid

Q. How does a buffer resist changes in pH?

Effect of adding a small amount of base (OH) to a buffer:

Reacts with HA, forming A-; [HA] decreases a little bit, [A-] increases a little bit

 \blacksquare *Effect of adding a <u>small</u> amount of acid* (H_3O^+) to a buffer:

Reacts with A⁻, forming HA; [A⁻] decreases a little bit, [HA] increases a little bit

Some common buffers

Buffer Name	Composition	Useful pH (Approx.)
Acetate	HC ₂ H ₃ O ₂ /NaC ₂ H ₃ O ₂	5
Carbonate	H ₂ CO ₃ /NaHCO ₃	7
Phosphate	NaH ₂ PO ₄ /Na ₂ HPO ₄	7
Ammonia	NH ₄ Cl/NH ₃	10

Importance of Buffers

The Carbonic-Acid-Bicarbonate Buffer in the Blood

By far the most important buffer for maintaining acid-base balance in the blood is the carbonic-acid-bicarbonate buffer. The simultaneous equilibrium reactions of interest are:

$$H^+(aq) + HCO_3^-(aq) \longrightarrow H_2CO_3(aq) \longrightarrow H_2O_{(1)} + CO_2(g)$$

During *acidosis*, the pH of blood drops below its normal level of \sim 7.4. What can be done to bring the pH back to 7.4?

- > Induce <u>hyperventilation</u> (Expel CO_2 at a faster rate)
- Equilibrium shifts to the right to use up H⁺, producing more CO₂)

During *alkalosis*, the pH of blood rises. What can be done to bring the pH back to 7.4?

- > <u>Hypoventilate</u> (Keep CO_2 in your lungs by holding your breath)
- > Equilibrium shifts to the left to replenish H⁺)

Image available at J. Suchocki, "Conceptual Chemistry: Understanding Our World Of Atoms and Molecules." 3rd Edition, Benjamin Cummings, Wesley: San Francisco, 2007.

Calculating pH of buffers: The Henderson-Hasselbalch Equation

- Relates the pH of a buffer solution to the concentration of buffer components
- Simply a rearranged version of the K_a expression for the acid component

Derivation:

 $\begin{aligned} \mathbf{K}_{a} \\ \mathbf{H}\mathbf{A}_{(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)} \rightleftharpoons \mathbf{H}_{3}\mathbf{O}^{+}_{(aq)} + \mathbf{A}^{-}_{(aq)} \end{aligned}$

$$\mathbf{K}_{a} = \frac{[\mathbf{A}^{-}] [\mathbf{H}_{3}\mathbf{O}^{+}]}{[\mathbf{H}\mathbf{A}]}$$

Taking the logarithm of both sides of the equation we get:

 $\log \mathbf{K}_a = \log \left[\mathbf{H}_3\mathbf{O}^+\right] + \log \left(\mathbf{[A^-]/[HA]}\right)$

 $-\log [H_{3}O^{+}] = -\log K_{a} + \log ([A^{-}]/[HA])$ Henderson-Hasselbalch (H-H) equation $pH = pK_{a} + \log \frac{[A_{-}]}{[HA]}$ Weak acid Similarly, for BH⁺/B buffer systems:

$$pH = pK_a + \log \frac{[B]}{[BH^+]}$$

For the conjugate acid, BH⁺

Properties of the H-H equation:

1. When [A-] = [HA]

 $pH = pK_a$

2. For *every power-of-10 change in the ratio* [A⁻]/[HA], the **pH changes** by **1 unit** (See Table 8-1, p. 173)

TABLE 8-1 on pH	Effect of [A ⁻]/[HA]	
[A ⁻]/[HA]	рН	
100:1 10:1 1:1 1:10 1:100	$pK_{a} + 2$ $pK_{a} + 1$ pK_{a} $pK_{a} - 1$ $pK_{a} - 2$	

Harris, Quantitative Chemical Analysis, 8e © 2011 W. H. Freeman

Understanding Table 8-2: Structures and pKa of common buffers

TABLE 8-2 Structures and pK _a values for common buffers ^{a,b,c,d}		Use this pK _a		
		p/	pK _a ^e	
Name	Structure	$\mu = 0$	$\mu = 0.1 M$	mass
N-2-Acetamidoiminodiacetic acid (ADA) N-Tris(hydroxymethyl)methylglycine	$H_2NCCH_2NCH_2NH$ H_2NCCH_2NH CH_2CO_2H $(HOCH_2)_2CNH_2CH_2CO_2H$	— (CO ₂ H) 2.02 (CO ₂ H)	1.59	190.15
Phosphoric acid	H ₃ PO ₄	2.15 (pK ₁)	1.92	98.00
N,N-Bis(2-hydroxyethyl)glycine (BICINE)	(HOCH ₂ CH ₂) ₂ ⁺ NHCH ₂ CO ₂ H	2.23 (CO ₂ H)	-	163.17

Example 1: Sodium hypochlorite (NaOCl), the active ingredient of almost all bleaches, was dissolved in a solution buffered to pH 6.80. Find the ratio [OCl]/[HOCl] in this solution.

Example 2: Find the pH of a 750-mL aqueous solution prepared by dissolving 15.50 g TRIS (MM 121.135) plus 5.23 g TRIS hydrochloride (MM 157.596).

Note: From Table 8-2, pKa of TRIS.HCI = 8.07.

TABLE 8-2 (continued)Structures and pK_a values for common buffers a,b,c,d					
		pK _a		Formula	
Name	Structure	$\mu = 0$	$\mu = 0.1 M$	mass	
Tris(hydroxymethyl)aminom hydrochloride (TRIS·HCl	(HOCH ₂) ₃ CNH ₃ ·Cl ⁻	8.07	8.10	157.60	

The pH of a buffer is nearly independent of volume

 $pH = pK_a + \log \frac{(\text{moles of } A^-/\text{Lof solution})}{(\text{moles of HA}/\text{Lof solution})}$

Note: L of solution cancel out

 $pH = pK_a + log \frac{moles of A^2}{moles of HA}$

Effect of Adding and Acid or a Base to a Buffer

Example 1: If we add 10.50 mL of 1.00 M HCl to the solution in the previous example, what will be the new pH?

Hint: Which buffer component will react with HCl? This is the time to set up an ICF table.

mol added H^+ = (0.01050 L)(1.00mol / L = 0.0105 mol H^+ Will react w/ A- $\mathbf{H}\mathbf{A}_{(aq)} \rightleftharpoons \mathbf{H}^+_{(aq)} + \mathbf{A}^-_{(aq)}$ Initial **mol** (I): 0.0105 0.1280 0.03319 Change (**C**): +0.0105-0.0105 - 0.0105 Final (**F**): +0.04369 0 0.1175 $pH = 8.07 + \log \frac{[0.1175]}{[0.04369]}$; pH = 8.50vs. original pH = 8.66

> pH drops a little bit since [HA] increases while the numerator, [A-], decreases

Example 2: If we add 5.00 mL of 1.00 M NaOH to the original TRIS buffer solution in Example 2 above, what will be the new pH?

mol added OH⁻ = (0.00500 L)(1.00mol / L = 0.00500 mol OH⁻ Will react w/ HA

pH = 8.07 + log $\frac{[0.133]}{[0.02819]}$; pH = 8.74

vs. original pH = 8.66

> Added base increases the buffer's pH a little bit.

NOTE: If you know the desired pH of solution and the pK_a of HA, you should be able to determine how much 0.100 M HCl or 0.100 M NaOH is needed to adjust the pH of a buffer.

8-41. Calculate how many milliliters of 0.626 M KOH should be added to 5.00 g of MOBS (Table 8-2) to give a pH of 7.40.

Preparing Buffers in Real Life

In real life, we don't really mix x g of NaA with y g of HA to prepare a buffer. Remember that a buffer has two components:

- ➤ a weak acid (HA) and its salt (NaA), or
- ➤ a weak base (B) and its salt (BHCl)

Preparing a buffer:

1. To prepare a buffer, start with one component and dissolve it in water.

2. Then add either HCl or NaOH to form the conjugate species until the desired pH is reached.

Example: You wish to prepare 1.00 L of buffer containing TRIS at a pH of 7.60. You have available solid TRIS hydrochloride and 1 M NaOH. How would you do it?

Buffer Capacity

Buffer capacity, β , is a measure of how well a solution resists changes in pH when a strong acid or a strong base is added.

Mathematical definition of buffer capacity:

$$\beta = \frac{dC_b}{dpH} = -\frac{dC_a}{dpH}$$

where C_a and C_b are the number of moles of strong acid and strong base per liter needed to produce a unit change in pH.

The greater the buffer capacity, the more resistant the solution is to pH change, the better the buffer.

Q. What is the pH of a buffer equal to when $[HA] = [A^{-}]$?

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
 pH = pK_a Maximum buffer capacity

- > Thus, a buffer works best (max. buffer capacity) when $pH = pK_a$
- When choosing a buffer, select one whose pK_a is as close as possible to the desired pH

Useful pH range of a buffer: $pH = pK_a \pm 1$

Exercise 1: Using Table 8-2, suggest the best buffer for each of the following pHs: (a) 4.00, (b) 5.50, (c) 7.30 and (d) 12.00.