
Weakly Nonlinear Stability Analysis
of Frontal Polymerization

By L. K. Gross and V. A. Volpert

A description of frontal polymerization is given via a free boundary model with
nonlinear kinetic and kinematic conditions at the free boundary. We perform a
weakly nonlinear analysis for the development of pulsating instabilities on
the cylinder, building on the linear stability analysis of [1]. We take as a
bifurcation parameter an experimentally measurable combination of material
and kinetic parameters. The asymptotic analysis leads to the derivation of an
ordinary differential equation of Landau–Stuart type for the slowly varying
amplitude of a linearly unstable mode. We classify nonlinear dynamics of the
polymerization front by doing a parameter sensitivity study of the amplitude
equation.

1. Introduction

The problem under consideration is to predict the salient features of a
free-radical polymerization front. The physical problem involves a test tube
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filled with a well-mixed combination of a monomer and a thermally unstable
initiator. Increasing the temperature at one end of the tube causes chemical
conversion to begin. The released heat diffuses into the reactants, causing wave
propagation via the usual thermal mechanism. When the initiator decomposes,
radicals form and begin to combine with the monomers, forming new radicals.
The new radicals then bond with other monomers, causing chains of monomers
to grow. Eventually each chain combines with a second radical, terminating
the growth and producing a polymeric molecule.

A comparison with self-propagating high-temperature synthesis (SHS) [2]
suggests that the process described above may eventually play a role in
the industrial production of polymers. In SHS, a combustion wave converts
powdered ingredients into a ceramic material or metallic alloy. As with frontal
polymerization (FP), the reaction is exothermic; the reaction rate depends
strongly on the temperature; and the bulk of the chemical reaction and heat
release occur in a narrow zone. SHS has several advantages over traditional
manufacturing methods, in which the mixture is baked in a furnace. Products
created by SHS are often more uniform and pure; synthesis times are shorter;
and the equipment is simpler and less expensive.

In both SHS and FP, the thermal feedback between the chemical kinetics
and the heat diffusion results in the sustainability of a traveling wave. In each
case the uniformly propagating wave becomes unstable in certain parametric
regimes.

A great variety of resulting oscillatory regimes has been documented
in SHS. Shkadinsky et al. [3] predicted the simplest ones theoretically
through numerical simulations on a model system of reaction-diffusion partial
differential equations. The oscillations were discovered experimentally by
Merzhanov et al. [4], who noted that oscillations produced layers in the
burned samples normal to the front. Zeldovich et al. described this work in a
monograph [5]. Many papers contain rather intricate bifurcation analyses of
instabilities (see, for example, [6–9]).

Although it has been thirty years since Chechilo et al. [10] discovered
frontal polymerization (in experiments in tubular chemical reactors under high
pressure), stability of propagation has only recently been analyzed. Schult and
Volpert did a linear stability analysis in [1].

Also, despite the fact that more than half of chemists worldwide are
currently working in polymer-related areas, nonlinear dynamics of polymeric
systems are still poorly understood [11]. Nevertheless, oscillatory regimes
similar to those observed in SHS have begun to be detected. In 1997, Solovyov
et al. [12] observed planar and nonplanar periodic modes numerically in
a reaction-diffusion model of polymerization and compared the results for
various kinetic schemes. They observed velocity pulsations and spin modes,
which Pojman et al. [13] had seen in experiments two years earlier. Masere
et al. [14] generated in subsequent experiments a period-doubling sequence
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that seemed to lead to chaos. As in SHS, pulsating modes were found to
change the properties of the resulting product.

Our paper analyzes the behavior of the traveling wave with respect to small
perturbations, taking parameter values that deviate slightly from the stability
threshold. This weakly nonlinear analysis constitutes a new methodology
for frontal polymerization. A parameter sensitivity study reveals nonlinear
dynamics of the polymerization front. In particular, we identify some parameter
ranges that produce pulsating instabilities.

The paper is organized as follows. The governing equations appear in
Section 2. Section 3 contains the linear stability analysis, which also appears
in [1] with one slightly different front condition and in [15], allowing for
non-adiabaticity. The weakly nonlinear analysis occurs in Section 4. We focus
on the situation in which the flat mode is the first mode to lose stability as the
bifurcation parameter passes through the critical value.

The method follows the classical Landau–Stuart theory of hydrodynamic
stability, which dates back as far as the 1940s [16–18]. The approach has
been used in many different contexts. One example is a one-sided model of
condensed-phase combustion on a strip with insulated edges [19, 20]. The
technique was also used in [8, 21] for solid combustion on the surface of a
cylinder.

The idea is to study the evolution of linearized eigenmodes modulated
by complex-valued amplitude functions of independent slow time scales.
Inserting a normal-mode ansatz for the temperature, monomer concentration,
and interface position perturbed about a basic traveling-wave solution into
the nonlinear problem and making systematic use of the method of multiple
scales yields constraints on the slowly-varying amplitudes (see, for example,
Kevorkian and Cole [22]).

One solvability condition implies that the amplitude A depends on the
slowest time scale t2 = ε2t only, where ε is a small parameter related to the
deviation from the stability boundary. In the next order of the perturbation
series, we obtain the Landau–Stuart equation

d A

dt2
= µχ A + β A2 Ā (1)

from the solvability condition. The ordinary differential equation (1) dictates
the dynamics of the single unstable mode subject to self-interaction.
We describe the complicated way in which χ and β in (1) depend
on the kinetic and material parameters, influencing the behavior of the
front.

In Section 5 we investigate the qualitative weakly nonlinear behavior of the
system for the various parametric regimes. We comment on consistency with
experiment.
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2. Governing equations

We use a free boundary model of frontal polymerization as introduced by
Goldfeder et al. [23]. It resembles the model of condensed-phase combustion
which Matkowsky and Sivashinsky [24] derived as an asymptotic limit of
the reaction-diffusion model for large activation energy. Although frontal
polymerization is a slower and less exothermic process, the nondimensional
quantities that determine the dynamics are of the same order [23], and the
same asymptotic techniques apply.

In [23], equations for conservation of energy, conservation of mass, and
laws of mass action describe the standard sequence of chemical reactions [25]
in frontal polymerization. Simplifications follow from making a steady-state
assumption, namely, the rate of change of total radical concentration is much
smaller than the rates of radical production and consumption [26]. We also
assume that the concentration of initiator radicals is much smaller than the
concentration of growing chains of monomers and replace the distributed
kinetics with two-step kinetics concentrated on the front, as in [1].

In a tube of circumference L, the reaction propagates longitudinally. Consider
a fixed coordinate frame in which the direction of motion of the front is labeled
−x̃ . Because the characteristic scale of the polymerization wave is generally
much smaller than the length of the tube, we consider the tube to be infinite
(−∞ < x̃ < ∞). We introduce a moving coordinate system x = x̃ − φ(y, t);
the front is at x = 0.

The dependent variables are temperature T (x, y, t), monomer concentration
M(x, y, t), initiator concentration I (x, y, t), and propagation velocity
u(y, t) = −∂φ(y, t)/∂t . The partial differential equations from [1] are

∂T

∂t
+ u

∂T

∂x
= κ∇2T,

∂ M

∂t
+ u

∂ M

∂x
= 0,

∂ J

∂t
+ u

∂ J

∂x
= 0 (2)

on {(x, y, t)|x ∈ (−∞, 0) ∪ (0, ∞), y ∈ (0, L), t ∈ (0, ∞)}, where J (x, y, t) =√
I (x, y, t), κ is the thermal diffusivity, assumed to be constant, and ∇2 is the

Laplacian in the front-attached coordinate system, that is,

∇2 = ∂2

∂y2
+ (

1 + φ2
y

) ∂2

∂x2
− 2φy

∂2

∂x∂y
− φyy

∂

∂x
.

At the edges y = 0, L of the domain we have periodic boundary conditions

T (x, 0, t) = T (x, L , t),
∂T

∂y

∣∣∣∣
y=0

= ∂T

∂y

∣∣∣∣
y=L

, (3)

φ(0, t) = φ(L , t), and
∂φ

∂y

∣∣∣∣
y=0

= ∂φ

∂y

∣∣∣∣
y=L

. (4)
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Conditions far ahead of the front are

lim
x→−∞ T = T0, lim

x→−∞ M = M0, lim
x→−∞ J = J0 (5)

and far behind the wave are

lim
x→∞

∂T

∂x
= 0, lim

x→∞ J = 0. (6)

Front conditions derived from the sharp-interface analysis [1, 15] including
curvature are

[T ] = 0, t > 0, (7)

κ

[
∂T

∂x

] (
1 +

(
∂φ

∂y

)2
)

= q(M0 − Mb)
∂φ

∂t
, t > 0, (8)

(
∂φ

∂t

)2

1 +
(

∂φ

∂y

)2 = F(Tb) ≡ κk01 RgT 2
b

q M0 E1
exp

(
J0 A2

A1
− E1

RgTb

)(∫ J0 A2
A1

0

eη − 1

η
dη

)−1

,

(9)

Mb = f (Tb) ≡ M0 exp

(
− J0 A2

A1

)
. (10)

We also have limx→0+ J = 0. The notation above for jump in function value
across x = 0 is defined as [a(x)] = a(0+) − a(0−). The parameter q above
is heat release, k01 and E1 are the frequency factor and activation energy,
respectively, related to the decomposition of the initiator, and k02 and E2

are the frequency factor and activation energy, respectively, related to the
polymerization. The universal gas constant is Rg. Tb ≡ limx→0+ T is the
reaction temperature, and Mb ≡ limx→0+ M . Ai ≡ k0i e−Ei /(Rg Tb) is the value
of the Arrhenius function for decomposition (i = 1) and for polymerization
(i = 2) at the reaction zone.

In the following, we will characterize stable and unstable regimes. We will
also show the role that the material and kinetic parameters play in determining
the dynamics in the weakly nonlinear setting.

3. Linear stability analysis

The free boundary problem (2)–(10) admits a traveling-wave solution of speed
û, namely,

T̂ (x) =
{

T0 + (T̂ b − T0) exp
(

û
κ

x
)
, x < 0

T̂ b, x > 0
, (11)
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M̂(x) =
{

M0, x < 0

M̂b, x > 0
, Ĵ (x) =

{
J0, x < 0

0, x > 0
,

φ̂(t) = −ût.

The pair (T̂ b, M̂b) satisfies simultaneously

T̂ b = T0 + q(M0 − M̂b) and M̂b = f (T̂ b), (12)

which follow from (8) and (10), respectively. Then,

û =
√

F(T̂ b), (13)

which follows from (9), can be calculated.
The linearization about the steady solution via X = X̂ + δ X̃ , X = T, M, J, φ

yields

LT̃ − dT̂

dx

(
∂φ̃

∂t
− κ

∂2φ̃

∂y2

)
= 0,

∂ M̃

∂t
+ û

∂ M̃

∂x
= 0,

∂ J̃

∂t
+ û

∂ J̃

∂x
= 0,

(14)
where

LT = ∂T

∂t
+ û

∂T

∂x
− κ

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (15)

Linearized boundary conditions at the front are

lim
x→0±

T̃ + qc
∂φ̃

∂t
= 0, (16)

lim
x→0+

M̃ + Pc
∂φ̃

∂t
= 0, (17)

[
∂ T̃

∂x

]
− qûc

κ
(Z − P)

∂φ̃

∂t
= 0. (18)

Also limx→0+ J̃ = 0. In the above,

c = M0 − M̂b

ûZ , (19)

where Z is proportional to the logarithmic derivative of the velocity of the
traveling wave with respect to the reaction temperature T̂ b. P is proportional
to the rate of change of the monomer concentration at the reaction front with
respect to the reaction temperature T̂ b. Specifically,

Z = (T̂b − T0)
∂

∂ T̂ b

ln û; (20)
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P = q
∂ M̂b

∂ T̂ b

. (21)

Both Z and P can be measured experimentally. They are introduced into the
problem via the substitutions

F ′(T̂ b) = 2û2Z
T̂b − T0

, f ′(T̂b) = P
q

. (22)

The first substitution follows from the definition (20) of Z and the definition
(13) of û. The second substitution follows from the definition (21) of P and
the expansion of Mb = f (Tb) given in (10) into a Taylor series about Tb = T̂ b.

For the linearized problem, boundary conditions on T̃ and φ̃ at the edges
y = 0, L are periodic. In the far field, linearized boundary conditions are

lim
x→−∞ X̃ = 0, X = T, M, J, lim

x→∞
∂ T̃

∂x
= 0. (23)

Note that the front condition (16) comes from expanding condition (9) and
using continuity of T (7) at the interface to get the limit as x → 0− in
addition to x → 0+. The condition (17) comes from expanding Mb = f (Tb)
defined in (10) and using (16) to substitute for T̃ b = limx→0+ T̃ . Condition
(18) comes from expanding the jump condition on ∂T/∂x in (8) and using
(17) to substitute for M̃b = limx→0+ M̃ .

The normal-mode solutions

T̃ = eωt±ik j y XT (x ; ω,Z), M̃ = eωt±ik j y X M (x ; ω,Z), φ̃ = eωt±ik j y, (24)

are separated-variables solutions of the linearized problem above, where
k j = 2 jπ/L for the tube circumference L; j = 0, 1, 2, . . . . The solutions are
clockwise- and counterclockwise-traveling waves on the surface of the cylinder.

The function X M (x ; ω,Z) satisfies a first-order ordinary differential equation.
It is piecewise continuous with the boundary condition in (23) on M̃ at −∞
determining the constant of integration on x < 0 and the front condition (17)
determining the constant of integration on x > 0. We get

X M (x ; ω,Z) =
{

0, x < 0

−ωPc exp
(−ω

û x
)
, x > 0

. (25)

Also, ω and XT (x ; ω,Z) satisfy a second-order eigenvalue problem. The
eigenfunction is piecewise continuous with the boundary conditions in (23) on
T at ±∞ determining one constant of integration on each of x < 0 and x > 0,
respectively. Front conditions (16) on T̃ determine the remaining two constants
of integration. Applying front condition (18) on [T̃ x ] yields the dispersion
relation
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4�3 + (
1 + 4s2

j + 4Z − Z2 + 2ZP − P2
)
�2

+Z
(
1 + 4s2

j + P
)
� + s2

jZ2 = 0, (26)

where

� = κ

û2
ω, s j = κ

û
k j .

To emphasize the dependence of ω on k j , we now write it as ω j (and � as � j ).
The basic solution (11) loses linear stability when two complex-conjugate

eigenvalues ω cross the imaginary axis at a critical value Zc of Z . By setting
Re(�) = 0 in the dispersion relation (26) and eliminating Im(�), we determine
Zc as a function of s j and P:

Zc = 1

C

{
−2s2

j + C(2 + P) ±
√(

2s2
j − C(2 + P)

)2 + C2
(− P2 + 1 + 4s2

j

)}
,

C = 1 + 4s2
j + P. (27)

At Z = Zc, two eigenvalues can be denoted as ±ω j = ±iψ j , where ψ j > 0.
The eigenfunction corresponding to ω j is

XT (x ; iψ j ,Zc) = −qcc




(
û2

κ
Zc + iψ j

)
er+x − û2

κ
Zceûx/κ , x < 0

iψ j er−x , x > 0
, (28)

where

r± = û

2κ

{
1 ±

√
1 + 4

(
i

κ

û2
ψ j + s2

j

)}
. (29)

Here cc is c in (19) evaluated at Z = Zc.
Replacing s j by a continuum of values s, we plot Zc against positive s for

various values of P to produce the neutral stability curves of Figure 1. Note
that, as in many other nonlinear problems of practical interest, the curves have
a minimum at a nonzero wave number. The region of stability corresponding
to each neutral stability curve lies below the curve; the instability region lies
above it. That is, for fixed values of s and P , the corresponding pair of
complex-conjugate eigenvalues crosses the imaginary axis in the ω plane as Z
increases above the threshold value Zc(s,P). Moreover, the axis is crossed
transversally: ∂ Re(ω)/∂Z < 0. Therefore, the loss of stability occurs through
a Hopf bifurcation.

By substituting s j = 0 into (27), we see that the flat mode loses stability at

Zc = 2 + P + √
5 + 4P ≡ Z∗. (30)

Figure 1 shows that for each value of P , there is also a second value of s at
which Zc = Z∗. In particular, by solving (27) with Zc = Z∗, we find that, in
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Figure 1. Neutral stability curves for P = 0, 0.1, 0.2, 0.9055 (bottom to top).

addition to s j = 0, the mode

s j = 1
2

√
1 + √

5 + 4P ≡ s∗ (31)

also loses stability at Z∗. Note from the figure that Zc < Z∗ for 0 < s < s∗,
and Zc > Z∗ for s > s∗.

Recall that we are interested in the discrete values ±s j = ±(κ/û)k j =
±2κ jπ/(ûL), j = 0, 1, 2, . . . , which allow the normal-mode solution (24) to
satisfy the periodic conditions at the edges = 0, L of the strip of width L. We
are thinking of a strip of width L = 2πr , where r is the radius of the tube.

If r < κ/(ûs∗), then all modes s j are stable for Z > Z∗. Exactly one
mode (s0 = 0) loses stability at Z = Z∗. Recall that s0 = 0 corresponds to
the dynamics with no spatial variation in the transverse direction (i.e., to the
one-dimensional case). See [20] for a detailed analysis in such a case for
combustion.

P = 0 corresponds to complete conversion. Observe that in Figure 1,
increasing P (decreasing the degree of conversion) raises the neutral stability
curve. That is, increasing P delays the onset of instability as we increase
Z . This also eliminates some unstable modes altogether (depending on the
cylinder circumference L). We see that incomplete conversion of the monomer
is a stabilizing effect.

4. Weakly nonlinear analysis

In this section we consider the case in which the tube has radius r < κ/(ûs∗),
for s∗ given in (31). As the parameter Z increases past the critical value Z∗,
the mode with wavenumber k0 = 0 loses stability first.
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We begin by considering a small deviation from the neutral stability curve,
namely,

µε2 = Z − Z∗, (32)

for Z∗ given in (30), and µ = ±1. This choice of the parameter ε allows for
the possibility of a Hopf bifurcation where the magnitude of the solution is on
the order of the square root of the bifurcation parameter.

To find the neutrally stable eigenvalue iψ , we evaluate the dispersion relation
(26) at s j = 0 and Z = Z∗ (implying �0 = iκψ/û2). Solving the real part gives

ψ = û2

2κ

√
Z∗(1 + P). (33)

Another quantity of interest is χ , which appears in the Landau–Stuart
equation (1) governing the dynamics of the weakly unstable modes;

χ ≡ ∂ω0

∂Z

∣∣∣∣
Z=Z∗

= û2

κ

∂�0

∂Z

∣∣∣∣
Z=Z∗

= û2{2κψ2(2 − Z∗ + P) − i û2(1 + P)ψ}
−12κ2ψ2 + û4Z∗(1 + P)

.

(34)

The above equation follows from differentiating the dispersion relation (26)
with respect to Z and evaluating at s j = 0 and Z = Z∗ (again implying
�0 = iκψ/û2).

4.1. The asymptotic strategy

The goal of this section is to find a solution to the nonlinear problem (2)–(10)
of the form

T (x, t, εt, ε2t) = T̂ (x) + ε A(εt, ε2t)eiψ t XT (x ; iψ,Z∗)

+ ε2T2(x, t, εt, ε2t) + · · · + CC,

M(x, t, εt, ε2t) = M̂ + ε A(εt, ε2t)eiψ t X M (x ; iψ,Z∗)

+ ε2 M2(x, t, εt, ε2t) + · · · + CC,

φ(t, εt, ε2t) = −ût + ε
{

A(εt, ε2t)eiψ t + 1
2 B(εt, ε2t)

}
+ ε2φ2(t, εt, ε2t) + · · · + CC.

(35)

The solution involves a combination of modulations of neutrally stable solutions
to the linearized problem, corresponding to k0 = 0.

The asymptotic strategy is to insert first the expansions (35) into the
problem (2)–(10). In addition, we expand the right-hand sides F(Tb) of (9)
and f (Tb) of (10) in Taylor series about Tb = T̂ b. Making the substitutions
(22) introduces the parameters Z and P . We then use Equation (32) to make
the substitution Z = Z∗ + µε2. Introducing the independent time scales t,
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t1 = εt , and t2 = ε2t , we replace ∂/∂t by ∂/∂t + ε∂/∂t1 + ε2∂/∂t2. With these
substitutions, the partial differential equation in T given in (2) becomes

ε2

{
LT2 − dT̂

dx

(
∂φ2

∂t
− κ

∂2φ2

∂y2

)
+ ∂

∂t1

(
T1 − dT̂

dx
φ1

)
− N L1(T1, φ1)

}

+ ε3

{
LT3 − dT̂

dx

(
∂φ3

∂t
− κ

∂2φ3

∂y2

)
+ ∂

∂t1

(
T2 − dT̂

dx
φ2

)

+ ∂

∂t2

(
T1 − dT̂

dx
φ1

)
− N L2(T1, φ1, T2, φ2)

}
+ O(ε4) = 0, (36)

where L is given in (15). Expanding u2 = F(Tb)(1 + φ2
y) in (9) and using

[T ] = 0 of (7) yields the front condition

ε2

{
lim
x→0

T2 + qcc

(
∂φ2

∂t
+ ∂φ1

∂t1

)
− qcc

2û
N1(φ1)

}

+ ε3

{
lim
x→0

T3 + qcc

(
∂φ3

∂t
+ ∂φ2

∂t1
+ ∂φ1

∂t2
− µ

Z∗
∂φ1

∂t

)

− qcc

2û
P1(φ1, φ2)

}
+ O(ε4) = 0. (37)

Expanding Mb = f (Tb) in (10) and using the previous condition to substitute
for higher order corrections to T̂b, we get the front condition

ε2

{
lim

x→0+
M2 + Pcc

(
∂φ2

∂t
+ ∂φ1

∂t1

)
− cc

2û
N2(φ1)

}

+ ε3

{
lim

x→0+
M3 + Pcc

(
∂φ3

∂t
+ ∂φ2

∂t1
+ ∂φ1

∂t2
− µ

Z∗
∂φ1

∂t

)

− cc

2û
P2(φ1, φ2)

}
+ O(ε4) = 0. (38)

Expanding the jump condition (8) on Tx and using the previous condition to
substitute for higher order corrections to M̂b, we get the front condition

ε2

{[
∂T2

∂x

]
− qûcc

κ
(Z∗ − P)

(
∂φ2

∂t
+ ∂φ1

∂t1

)
− qcc

κ
N3(φ1)

}

+ ε3

{ [
∂T3

∂x

]
− qûcc

κ
(Z∗ − P)

(
∂φ3

∂t
+ ∂φ2

∂t1
+ ∂φ1

∂t2

)

− qûccµ

κ

P
Z∗

∂φ1

∂t
− qcc

κ
P3(φ1, φ2)

}
+ O(ε4) = 0. (39)
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Here Tj , M j , and φ j are the O(ε j ) perturbations of T , M , and φ, respectively,
given in (35), and cc is given by the expression (19) for c evaluated at
Z = Z∗. Terms labeled N L j are nonlinear functions of the arguments indicated
(see Appendix A). Terms labeled N j and Pj are nonlinear functions of the
forms

N j = N j1

(
∂φ1

∂t

)2

+ N j2

(
∂φ1

∂y

)2

,

Pj = Pj1
∂φ1

∂t

(
∂φ2

∂t
+ ∂φ1

∂t1

)
+ Pj2

(
∂φ1

∂t

)3

+ Pj3
∂φ1

∂t

(
∂φ1

∂y

)2

(40)

+Pj4
∂φ1

∂y

∂φ2

∂y
.

(See Appendix A for the coefficients.)
Equating like powers of ε results in subproblems for the terms in the

perturbation expansions (35). Note that no O(1) terms appear in the expanded
problem (36)–(39) because in (35) we took the temperature-concentration-
interface triple (T, M, φ) perturbed about (T̂ (x), M̂(x), −ût), a solution to the
nonlinear problem (2)–(10).

Similarly, no O(ε) terms appear in the expanded problem (36)–(39). The O(ε)
problem is just the linearized problem (14)–(23) with Z = Z∗. It is satisfied
identically by the O(ε) terms in the expansions (35) of T , M , φ, namely,

T1(x, t, εt, ε2t) = A(εt, ε2t)eiψ t XT (x ; iψ,Z∗) + CC,

M1(x, t, εt, ε2t) = A(εt, ε2t)eiψ t X M (x ; iψ,Z∗) + CC, (41)

φ1(t, εt, ε2t) = {
A(εt, ε2t)eiψ t + 1

2 B(εt, ε2t)
} + CC.

We will examine the O(ε2) and O(ε3) subproblems in Sections 4.3 and
4.4. In order to have bounded solutions, the subproblems will have to satisfy
integral solvability conditions. The conditions will lead in turn to differential
equations in the amplitudes A and B.

For the O(ε2) problem, one such differential equation will show that the
complex amplitude A depends on the slowest time scale t2 only. The other will
result in an expression for B in terms of A. Solving the O(ε2) problem subject
to these differential equations will give the forms of T2 and φ2 with A still
unknown. The solvability condition on the O(ε3) problem will lead to the
ordinary differential equation (1), which will determine the dynamics of the
unstable modes.
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4.2. Solvability conditions

The O(ε j ) subproblems included in (36)–(39), j = 2, 3, can be written as

LTj − dT̂

dx

(
∂φ j

∂t
− κ

∂2φ j

∂y2

)
= Q̂ j (x, y, t), (42)

lim
x→0

Tj + qcc
∂φ j

∂t
= α̂ j (y, t), (43)

lim
x→0+

M j + Pcc
∂φ j

∂t
= β j (y, t), (44)

[
∂Tj

∂x

]
− qûcc

κ
(Z∗ − P)

∂φ j

∂t
= γ̂ j (y, t), (45)

where t = (t, t1, t2), and we have named the right-hand sides above as Q̂ j , α̂ j ,
β j , and γ̂ j .

To obtain solvability conditions for the perturbed problem in Section 4, we
first take the inner product of the partial differential equation (42) with a test
function v, namely,(

LTj − dT̂

dx

(
∂φ j

∂t
− κ

∂2φ j

∂y2

)
, v

)
= (Q j (ξ, η, t), v), (46)

where we define the inner product of two functions u and v as

(u, v) = lim
t f →∞

1

t f

∫ t f

0

∫ L

0

∫ ∞

−∞
u(ξ, η, τ )v(ξ, η, τ ) dξ dη dτ. (47)

Throughout this section, we assume that Tj , v ∈ L2(D), where D = {(x, y, t)|
0 ≤ y ≤ L , −∞ < x < ∞, 0 ≤ t < ∞}, and that Tj and v are bounded on D.
The function φ j (y, t) ∈ L2([0, L] × [0, ∞)) and is bounded on that set.

We define the adjoint problem by integrating (46) by parts appropriately,
applying the conditions (23) at x = ±∞, and applying the definition of T̂ (x)
in (11). For the problem retaining y dependence, we also apply the periodic
conditions (3) on Tj at y = 0, L . The function v is in the nullspace of the
adjoint operator if

L∗v = −vt − κ(vyy + vxx ) − ûvx = 0, (48)

and v satisfies

v|y=0 = v|y=L ,
∂v

∂y

∣∣∣∣
y=0

= ∂v

∂y

∣∣∣∣
y=L

, (49)

[v] = 0, lim
x→−∞

∂v

∂x
= 0, and lim

x→∞ v = 0. (50)
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Then the inner product (46) reduces to

lim
t f →∞

1

t f

∫ t f

0

∫ L

0

([
∂Tj

∂x

]
κv̄|x=0 − κTj |x=0

[
∂v̄

∂x

]

− φ j q(M0 − M̂b)û
∂v̄

∂x

∣∣∣∣
x=0−

)
dη dτ

= lim
t f →∞

1

t f

∫ t f

0

∫ L

0

∫ ∞

−∞
Q̂ j (ξ, η, t)v̄ dξ dη dτ,

where û2 = F(T̂b) as given in (13). When front conditions (43) and (45) are
applied to the equation above and we integrate by parts in t, we get the last
boundary condition for the adjoint problem:

(Z∗ − P)
∂v

∂t

∣∣∣∣
x=0

+ Z∗û
∂v

∂x

∣∣∣∣
x=0−

+ κ

û

[
∂2v

∂x∂t

]
= 0. (51)

The solvability condition is

lim
t f →∞

κ

t f

∫ t f

0

∫ L

0

(
γ̂ j (η, t)v̄|x=0 − α̂ j (η, t)

[
∂v̄

∂x

])
dη dτ

= lim
t f →∞

1

t f

∫ t f

0

∫ L

0

∫ ∞

−∞
Q̂ j (ξ, η, t)v̄ dξ dη dτ, (52)

where Q̂ j , α̂ j , and γ̂ j are right-hand sides in conditions (42)–(45). Note that
the equation in (2) in M is solvable without a special condition such as (52).

Solving the partial differential equation (48) by separation of variables,
subject to the periodic conditions in (49) on v, allows the y-dependent v±:

v± = ei(l j t±k j y)h(x ; il j ), k j = 2 jπ/L , j = 0, 1, 2, . . . , (53)

where h(x ; il j ) satisfies

κh′′ + ûh′ − (
κk2

j − il j

)
h = 0. (54)

Applying conditions (51) on v implies that we must have

[h] = 0, lim
x→−∞

dh

dx
= 0, and lim

x→∞ h = 0. (55)

Applying condition (51) yields l j = ψ j , where � = κψ j/û2 satisfies the
dispersion relation (26).



Weakly Nonlinear Stability Analysis 365

Therefore, the adjoint eigenfunction is

h(x ; iψ j ) =




exp

(
û

2κ

{
−1 +

√
1 + 4

(
− κ

û2 iψ j + κ2

û2 k2
j

)}
x

)
, x < 0

exp

(
û

2κ

{
−1 −

√
1 + 4

(
− κ

û2 iψ j + κ2

û2 k2
j

)}
x

)
, x > 0

, (56)

where we have taken the arbitrary normalization constant to be 1. A solution
to the adjoint of the linearized problem is

v±(x, y, t ; iψ j ) = ei(ψ j t±k j y)h(x ; iψ j ). (57)

We will focus on the case k j = 0 in the subsequent sections.
Note that if j = 0 then k j = 0, and ψ j = 0 is also an eigenvalue. Another

adjoint solution is

v0(x, y, t ; 0) =
{

1, x < 0

exp
(− û

κ
x
)
, x > 0

. (58)

The presence of this trivial eigenvalue is due to the invariance of the original
problem with respect to a shift in the x direction. Only the front velocity, not
its position, enters the formulation of the direct problem.

4.3. The O(ε2) problem

Solvability conditions for the O(ε2) problem will show that the complex
amplitude A depends on the slowest time scale t2 only and will lead to an
expression for B in terms of A. In addition, solving the O(ε2) problem we will
obtain the forms of T2 and φ2 with A still unknown.

Substituting y-independent T1, M1, and φ1 as given in (41), the O(ε2)
subproblem included in (36)–(39) can be written as (42)–(45) for j = 2, where
the inhomogeneous terms have the forms

Q̂2(x, t) =
(

− ∂ A

∂t1
eiψ t

(
XT (x ; iψ,Z∗) − dT̂

dx

)

+ A2e2iψ t iψ
d XT

dx
− AĀiψ

d XT

dx
+ CC

)
+ ∂ B

∂t1

dT̂

dx
, (59)

α̂2(t) = −qcc

{(
∂ A

∂t1
eiψ t + A2e2iψ t

(
N11

2û
ψ2

)

− AĀ

(
N11

2û
ψ2

)
+ CC

)
+ ∂ B

∂t1

}
, (60)
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γ̂2(t) = qcc

κ

{(
û(Z∗ − P)

∂ A

∂t1
eiψ t + A2e2iψ t

(−N31ψ
2
)

+ AĀ
(
N31ψ

2
) + CC

)
+ û(Z∗ − P)

∂ B

∂t1

}
, (61)

where ψ is given in (33). Expanding boundary conditions (5)–(6) and equating
O(ε2) terms, we get

lim
x→−∞ T2 = 0, lim

x→∞
∂T2

∂x
= 0. (62)

The problem must satisfy the solvability condition (52) for j = 2 and v = v±
as defined in (57) with k j = 0. Integrating by parts in x, the solvability condition
can be expressed as a nonzero coefficient times d A/dt1 equals zero, implying

∂ A

∂t1
= 0. (63)

That is, the amplitude A depends on the slowest time scale t2 only.
Similarly, the solvability condition (52) for j = 2 must be satisfied for

v = v0 as defined in (58). Using the reasoning outlined above, the solvability
condition (52) can be expressed as

∂ B

∂t1
= −2AĀr0, r0 = − ψ2

û(1 + P)

(
û

κ
Re

(
1

r+

)
+ N11

2
+ N31

)
, (64)

where r+ is the expression in (29) evaluated at s j = 0 and ψ j = ψ , and the
Ni j are given in Appendix A.

Applying the conditions (63) and (64) puts the O(ε2) problem in a solvable
form. In particular, we get (42)–(45) for j = 2 with the right-hand sides that
do not produce secular terms, namely,

LT2 − dT̂

dx

(
∂φ2

∂t
− κ

∂2φ2

∂y2

)
= A2e2iψ t R2(x) + AĀR0(x) + CC,

lim
x→0

T2 + qcc
∂φ2

∂t
= A2e2iψ t F2 + AĀF0 + CC,

[
∂T2

∂x

]
− qûcc

κ
(Z∗ − P)

∂φ2

∂t
= A2e2iψ t G2 + AĀG0 + CC,

and (44) in M2, where

R j (x) = −(−1) j/2iψ X ′
T (x ; iψ,Z∗) − r j T̂

′(x),

Fj = qcc

{
(−1) j/2 N11

2û
ψ2 + r j

}
,

G j = qcc

κ

{
(−1) j/2 N31ψ

2 − û(Z∗ − P)r j

}
,
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j = 0, 2, for r0 given in (64), and r2 = 0. Note that boundary condition (44)
required no modifications to the right-hand side β(y, t); it does not lead to
secular terms.

Temperature and interface solutions have the forms
T2(x, t) = A2e2iψ t g2(x) + AĀg0(x) + CC, (65)

φ2(t) = A2e2iψ tC2 + CC. (66)

The functions g2(x), g0(x), and the constant C2 are defined in Appendix B.
They satisfy the initial-value problems

κg′′
j − ûg′

j − i jψg j = −i jψ T̂ ′(x)C2 − R j (x), (67)

g j (0) = −i jψqccC2 + Fj , (68)

[g′
j (x)] = i jψ

qccû

κ
(Z∗ − P)C2 + G j , (69)

lim
x→∞ g′

j (x) = 0,

lim
x→−∞ Re(g0(x)) = 0,

lim
x→−∞ g2(x) = 0.

4.4. The O(ε3) problem

Solvability conditions for the O(ε3) problem will lead to an ordinary differential
equation for the slowly varying amplitude A. When we substitute T1, M1, φ1, T2,
M2, and φ2 into the expanded problem (36)–(39), the O(ε3) subproblem can be
written as (42)–(45) for j = 3, where the inhomogeneous terms have the forms

Q̂3(x, t) = eiψ t

{
d A

dt2

(−XT (x ; iψ,Z∗) + T̂
′
(x)

) + A2 ĀR1(x)

}
+ T , (70)

α̂3(t) = eiψ t

{
qcc

(
−d A

dt2
+ µ

Z∗ iψ A

)
+ A2 ĀF1

}
+ T , (71)

γ̂3(t) = eiψ t

{
qcc

κ

(
û(Z∗ − P)

d A

dt2
+ µû

P
Z∗ iψ A

)
+ A2 ĀG1

}
+ T . (72)

Here T stands for non-secular terms, and

R1(x) = 2C2iψ X̄
′
T (x ; iψ,Z∗) − 2r0 X ′

T (x ; iψ,Z∗)

+ 2iψ Re(g′
0(x)) − iψg′

2(x),

F1 = qccψ

2û

{
P11(−2r0i + 2ψC2) + 3P12iψ2

}
,

G1 = qccψ

κ

{
P31(−2r0i + 2ψC2) + 3P32iψ2

}
.
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Expanding boundary conditions (5)–(6), and equating O(ε3) terms, we get

lim
x→−∞ T2 = 0, lim

x→∞
∂T2

∂x
= 0.

The problem must satisfy the solvability condition (52) for v = v± as
defined in (57) and (56). Simplifying the integrals as in the previous section
yields the Landau–Stuart equation

d A

dt2
= µχ A + β A2 Ā, (73)

where χ is given in (34), and

β =− κ(G1h̄(0) − F1[h̄′(x)]) − ∫ ∞
−∞ R1(ξ )h̄(ξ ) dξ

qcc(û(Z∗ − P)h̄(0) + κ[h̄′(x)]) +∫ ∞
−∞

(
XT (ξ ; iψ,Z∗) − T̂

′
(ξ )

)
h̄(ξ ) dξ

.

Here h(x) ≡ h(x ; iψ) is the adjoint eigenfunction (56), for ψ given in (33).
Recall XT (x ; iψ j ,Zc) is given in (28).

Note that β depends on the kinetics in a complicated way, as F1 and G1 depend
on derivatives of F(Tb) and f (Tb) in (9) and (10) evaluated at Tb = T̂ b, and
R1(x) depends on solutions (B.1) to the initial-value problems of Section 4.3.

5. Asymptotic dynamics

In this section we use the Landau–Stuart equation (73) to make predictions
about the dynamical evolution of the polymerization front for a Z value O(ε2)
above or below the critical value as in (32). The amplitude equation (73)
completely determines the dynamics of the weakly unstable mode

A(t2)eiψ t , (74)

subject to nonlinear self-interaction.
To investigate the dynamics, we first rewrite the Landau–Stuart equation

(73) in terms of the magnitude of the complex amplitude via the substitution
A(t2) = |A(t2)|eiθ (t2). Equating the real parts yields

d|A|
dt2

= |A|(µ Re(χ ) + |A|2 Re(β)). (75)

Perturbation amplitude |A| = 0 is a stationary solution for (75). One can
easily prove using equations (34), (33), and (30) that Re(χ ) > 0 for all physical
values of the parameters. Consequently, for the ordinary differential equation
(75), trajectories with an initial point close to |A| = 0 tend toward |A| = 0 in
the stable setting µ = −1, where µ is defined in (32). The basic solution is
recovered in the limit.

By contrast, if µ = 1, trajectories with an initial point near the origin in the
complex A plane tend away from the origin. That is, in the absence of other
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equilibria, the amplitude blows up in (slow) time for Z slightly above the
critical value.

However, equation (75) does have a second equilibrium |A| =√−µ Re(χ )/Re(β) if µ/Re(β) is negative. In the weakly nonlinear regime,
Re(β) is negative for all physically relevant parameter values that we considered,
as discussed below. Therefore, circular limit cycles |A| = √−µ Re(χ )/Re(β)
exist in the unstable case µ = 1. A supercritical Hopf bifurcation occurs at
Z = Z∗.

A simple stability analysis of (75) shows that d|A|/dt2 < 0 outside of
the circle |A| = √−µ Re(χ )/Re(β), and d|A|/dt2 > 0 inside it. The limit
cycles are asymptotically stable. The nonlinear solution develops oscillations
of magnitude O(ε) on the time scale O(ε−2).

To illustrate that Re(β) < 0 in a wide class of parameter regimes,
Figure 2 shows a graph of b versus j0 = J0k02/k01, where nondimensional
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Figure 2. Graph of dimensionless b = Re(β)κ3/û4 versus dimensionless j0 = J0k02/k01.
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Figure 3. Front position in (35) as a function of time up to O(ε), where ε = 0.1; t = 0
corresponds to onset of steady-state behavior.

b = Re(β)κ3/û4. Also,

E1 − E2

Rgq M0
= 19.79;

E1

Rgq M0
= 58.4. (76)

The diffusivity constant κ remains free, and initial temperature T0 is chosen so
that Z is the neutrally stable value Z∗. We note that Re(β) does not change
sign if T0 is increased (decreased) such that Z is decreased (increased) to a
value O(ε2) below (above) Z∗.

Figures 3 and 4 illustrate the oscillatory solutions that develop in the weakly
unstable regimes. In Figures 3 and 4, parameter values are as in [1], namely,
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Figure 4. Leading-order correction in (41) to the basic state monomer concentration as a
function of the spatial variable at a given time in the pulsating regime.



Weakly Nonlinear Stability Analysis 371

q = 33.24 L K/mol, M0 = 7 mol/L,

I0 = 0.1 mol/L, κ = 0.0014 cm2/s,

E1 = 27 kcal/mol, E2 = 17.85 kcal/mol,

k01 = 2 × 1012 1/s, k02 = 1.83 × 109
√

L/mol/s.

(77)

(They are consistent with the values (76) of Figure 2.)
The solid line in Figure 3 shows the pulsating front position for T0 chosen such

that Z = Z∗ + ε2. The function is −ût + ε[A(εt, ε2t)eiψ t + CC + B(εt, ε2t)],
as given in (35), where the differential equation (64) defines B. The
dashed line is the stable traveling wave −ût for T0 chosen such that
Z = Z∗ − ε2. Figure 4 shows an O(ε) perturbation M1 of monomer
concentration given in (41). It has an oscillatory character behind the reaction
front.

6. Conclusions

In this paper we have performed a weakly nonlinear analysis of sharp
polymerization fronts that propagate in a test tube, focusing on the case of a
flat interface. The asymptotic analysis led to the derivation of a Landau–Stuart
equation for the slowly varying amplitude of the weakly linearly unstable
mode. The ordinary differential equation resulted from the application of a
solvability condition to the O(ε3) problem.

By analyzing the dynamics of the Landau–Stuart equation, we identified
periodic pulsations of the front for a range of parameter values. Figure 2 shows
that as the initial concentration of the initiator increases (or the decomposition
frequency of the initiator decreases), the dimensionless Re(β) approaches an
O(1) limiting value. (In fact, convergence is very rapid.) Consequently, the
amplitude

√−Re(χ )/Re(β) approaches a constant.
This limiting regime as j0 = J0k02/k01 tends to infinity corresponds to

a well-known model of condensed-phase combustion. Our detection of
a supercritical bifurcation is consistent with a similar analysis [24] in
condensed-phase combustion. As mentioned in Section 1, the accompanying
oscillations have been detected experimentally in self-propagating high
temperature synthesis.

Figure 2 shows that for small values of j0, on the other hand, Re(β)
increases sharply in absolute value. As a result, the amplitude

√−Re(χ )/Re(β)
approaches zero.

One might expect these small one-dimensional pulsations to be hard to
detect experimentally, and, indeed, they have not been observed in frontal
polymerization. Figure 3 emphasizes that it is difficult to distinguish such
oscillations from a stable traveling wave.
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Appendix A. Nonlinear functions in the expanded problem

The coefficients in the nonlinear functions (41) in the expanded problem
(36)–(39) are

N L1(T1, φ1) = ∂T1

∂x

(
∂φ1

∂t
− κ

∂2φ1

∂y2

)
− 2κ

∂φ1

∂y

∂2T1

∂y∂x
+ κ

d2T̂

dx2

(
∂φ1

∂y

)2

,

N L2(T1, φ1, T2, φ2) = 2κ
d2T̂

dx2

∂φ1

∂y

∂φ2

∂y
+ ∂T1

∂x

(
∂φ2

∂t
+ ∂φ1

∂t1
− κ

∂2φ2

∂y2

)

+ ∂T2

∂x

(
∂φ1

∂t
− κ

∂2φ1

∂y2

)
− 2κ

(
∂φ1

∂y

∂2T2

∂y∂x
+ ∂φ2

∂y

∂2T1

∂y∂x

)

+ κ

(
∂φ1

∂y

)2
∂2T1

∂x2
,

N11 = 1 − q2c2
c

2
F ′′(T̂ b),

N12 = −û2,

P11 = 2N11,

P12 = q2c2
c

2

(
1

û
F ′′(T̂ b)N11 + qcc

3
F ′′′(T̂ b)

)
,

P13 = q2c2
c

2û
F ′′(T̂ b)N12 + 2û,

P14 = −2û2,

N21 = PN11 + q2ccû f ′′(T̂ b),

N22 = PN12,

P21 = PP11 + 2q2ccû f ′′(T̂ b),

P22 = PP12 − q2cc f ′′(T̂ b)N11 − 1
3q3c2

c û f ′′′(T̂ b),

P23 = PP13 − q2cc f ′′(T̂ b)N12,

P24 = PP14,

N31 = 1
2 N21 + P,

N32 = 1
2 N22 + û2Z∗,

P31 = 1
2 P21 + 2P,
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P32 = 1

2
P22 − 1

2û
N21,

P33 = 1

2
P23 − 1

2û
N22 − û(Z∗ − P),

P34 = 1
2 P24 + 2û2Z∗

Appendix B. Solutions to initial-value problems

The solution T2, φ2 in (65), (66) to the O(ε2) problem depends on the functions
g j (x) and constants C j , j = 0, 2, which satisfy the initial-value problems
(67)–(69). Solutions to the initial-value problems are

g j (x) =
{

a j1eY j+x + D j1eûx/κ + D j2xeûx/κ + D j3er+x , x < 0

a j2eY j−x + D j4er−x , x > 0
, (B.1)

where

Y2± = û ±
√

û2 + 8iψκ

2κ
, Y0± = 0,

D21 = qccZ∗û2(2C2κ + û)

2κ2
,

D22 = 0,

D23 = −qccr+(û2Z∗ + iψκ)

κ
,

D24 = −iqccr−ψ,

D02 = qccZ∗û (iψ û + r0κ)

κ2
,

D03 = D23,

D04 = D24,

and r± are the expressions in (29) evaluated at j = 0. When j = 2, applying
initial conditions (68) and (69) determines a21, a22, and C2. When j = 0,
applying initial conditions (68) and (69) determines a01, a02, and D01.
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