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A free boundary model is used to describe frontal polymerization.
Weakly nonlinear analysis is applied to investigate pulsating instabil-
ities in two dimensions. The analysis produces a pair of Landau equa-
tions, which describe the evolution of the linearly unstable modes.
Onset and stability of spinning and standing modes is described.

Introduction

We consider the nonlinear dynamics of a free radical polymerization front
in two dimensions. Frontal polymerization (FP) refers to the process, by which
conversion from monomer to polymer occurs in a narrow region that propagates
in space. It was first documented experimentally by Chechilo, Khvilivitskii and
Enikolopyan (1). In the simplest case, a polymerization front can be generated
in a test tube containing a mixture of monomer and initiator by supplying heat to
one end of the tube. The heat subsequently decomposes the initiator into free rad-
icals, which trigger the highly exothermic process of free-radical polymerization.
The focus of our attention will be the self-sustaining wave which travels through
the tube as polymer molecules are being formed. Uniformly propagating planar
waves may become unstable as parameters vary resulting in interesting nonlin-
ear behaviors (2). To ensure the desired uniformity and quality of the resulting
product, it is important to have a clear understanding of the stability of the propa-
gating front. A complete linear stability analysis was first presented by Schult and
Volpert (3), and a one-dimensional nonlinear stability analysis was done later by
Gross and Volpert (4). Our paper extends this nonlinear analysis to two dimen-
sions, which allows us to describe and analyze the spinning waves that have been
observed experimentally and also standing waves.
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Mathematical Model

Consider a cylindrical shell of circumference
�

, in which the reaction propa-
gates longitudinally. In a fixed coordinate frame ��������
	 the direction of motion of
the front is ���� where ��
����� ��
 and ��� � � ��� By introducing a moving
coordinate system ��� �� ����� ������	 where � is the location of the reaction front at
time � , we fix the front at ��� � � The dependent variables in our model are the
temperature � � �!���"����	 , monomer concentration #$� �!��������	%� initiator concentration& � �!��������	 and velocity of the propagating front '(� ������	)� �+*-,.� ������	�/102� . Under
sharp-interface approximation (3), (5), we solve the reactionless equations

*"�* � �3��4 *"�* � �6587 � � �*-#* � �3��4 *�#* � � � �*.9* � �3� 4 *!9* � � � �
both ahead of and behind the front. Here 9 �;: & , 5 is the thermal diffusivity
and 7 �

the Laplacian for the moving coordinate system defined as

7 � � * �

* � � <>=�?@< , �A1B * �

* � � �DC2, A * �

* � * � �3, AEA ** � �
Boundary conditions far ahead of the front � �GF ��
 	 are � F �IH , # F #3H ,9 F 9JH , whereas far behind the front � �KF 
 	 , �IL F � . We assume that for
all ��M � , 9 � � � as the initiator is completely consumed as the reaction front
progresses

�
We assume periodic boundary conditions in � for both � and � . The

front conditions derived from sharp-interface analysis are (3), (5)N �PO � � �5 N � L O �RQ �S# H �3#�T 	 ��4?@< � �A �
� �4?@< � �A ��U �V�-T 	XW 58Y H �EZ�[ � �TQ #3H]\ �_^a`cb �ed H � \ �Z�[ � T 	+f"g3hSiHkjml � ?n 02npo)q � �

#rT �6s �V�IT 	t� # H ^E`cb �u�td H 	-� d H � 92Hwv �v �

�
The brackets denote a jump in a quantity across the front

N x O � x � �y� �pz 	 �x � �y� � q 	 , Q is the heat released per unit concentration of monomer, � T and
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# T are the temperature and monomer concentration at the front respectively,v�� � Y H�� ^E`cb ���+\�� / Z�[ � T 	 is the Arrhenius function for decomposition � � � ? 	
and polymerization � � � C 	 reactions, with Y H�� and \�� being the frequency factors
and activation energies of both processes. The universal gas constant is denoted
as Z�[ �

Basic Solution and Its Stability

The stationary solution in 1-D is

��3� �"	t� � � H < � ��-T ��� H 	 ^E`cb � �' ��/258	"� � �����IT �y� M � �
�# � �"	t�	� #3H �y� � ��#rT �y� M � � �9�� �"	X�	� 92H �y� ���� �$� M � �

�� 4 � � �' M � �
where �� T � ��H < Q � #3HP� �# T 	E� �# T � s � �� T 	E� �' � �6U � �� T 	 �
A detailed account of the linear stability analysis of this system can be found in
(3), (4). We use the following non-dimensional parameters in the analysis


 � � U�� � ��IT 	 � ��-TX��� H 	U � �� T 	 W C
� �� T �G�"H 	 *�
�� �'* �� T ��
 � � U�� � � ��-T 	 � ��IT �G� H 	 �

C U � �� T 	 �

��+� U�� � � � ��IT 	 � ��IT �G� H 	 �� U � �� T 	 ��� � � Q s � � �� T 	XW Q * �#rT* �� T �� � � ?C Q � �� T �G��H 	�s � � � �� T 	%����� � ?� Q � �� T ����H 	 � s � � � � �� T 	 �

The resulting dispersion relation in non-dimensional form is (4)��� � < � ?�< ��� � < � 
 � ��� 
 � � � � 	 � 	 � � < 
 � � ?@< ��� � < � � 	 � < � � 
 �

�
� � �

Here Y�� C�� d / � � d � ? � C � �w�a� , � �$5"Y / �' is the non-dimensional wavenumber
and

� � 5 � / �' �

is the non-dimensional frequency of oscillation. Instability
occurs when a pair of complex conjugate eigenvalues crosses the imaginary axis
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as the parameters vary. At the stability boundary


 ����� � � < C � � � ��� � = ?@< ��� � < � �
B q �

< C f � C < � � �DC � � =�?@< ��� � < � �
B q ��� � � � �

� < ?@< ��� � o��	 �
� �H � ��

� � 	 � � ?� 
 ����� =�?@< ��� � < � �

B �
The neutral stability curve in the � � � 
 � 	 plane has a minimum at

� � ��� M � for
all � ��� � �

Weakly Nonlinear Analysis

We perform a nonlinear analysis that will allow us to obtain amplitude equa-
tions to characterize the evolution of the unstable modes. Gross and Volpert (4)
have studied the 1-D case for loss of neutral stability at the wavenumber

� � � .
This corresponds to sufficiently small values of the tube circumference

�
. The

analysis in this instance results in a single Landau-Stuart equation which governs
the weakly unstable modes. If, however, the tube circumference

�
is large, loss of

stability will occur for some
� M � . Our nonlinear analysis yields a coupled set of

Landau amplitude equations.
We introduce time scales � H � �%�1� � �����%� � � ��� � � and expand � � # � and �

as � � �� < � � � < � � � � < � � � � < � �e� � # � �# < � # � < � � # � < � � # � < �e� � � � �� �' � H < � � � < � � � � < � � � � < � � � Also 
 � � 
 ����� <�� � �

. To non-dimensionalize
the above the following scales are used , where d � � � ? � C� � �' 5 �!�$n � �' 5 �����K� �' 5 � ��� h �

�' 5 � h ��� h � 5�' ��� h ��� � ��� T �G�"H �� T � �IT�� T ����H �! � #� �#rT < # H �! T � #rT� �#�T < # H �" h T � # h T� �#rT < # H �
Consequently, we have the following sequence of problems

* � h* � H < * � h* � � f *
� � h* � � < * � � h* n �

o � f * � h* � H < *
� � h* n �

o 0 ��0 � � �# h � (1)

N � h O � � � $ * � h* �&% � * � h* � H �  h T � �Z h � (2)
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C * � h* � H < 
 ����� � h T � �� h �  h TX� � � � h T � �� h � (3)

where �# h � �Z h � �� h and �� h are given in the Appendix. The solution � h � � h satisfy
periodic boundary conditions in n and* � h* � ���� ��� z�� � � � � h � ��� q � � � � (4)

where �# h � �Z h � �� h and �� h are given in the Appendix.
The solvability condition for problem (1)-(4) is

g 	
	� iH g
�H f x�� ��� H f � �
 ����� � � h < �Z h < �� h o � ?
 ����� � � h $ *
x
* � % o 02nc0 � H� g 	
	� iH g �H g �

q � �# h x 0 � H 0Jnp0 � �
where

x
is a solution of the adjoint problemx�� � � ��n�� � H 	t� � ^a`cb = � � H � H�� � � n < �

� = � ?@< 0 B � B � � �K�^a`cb = � � H � H�� � � n < �

� = � ? � 0 B � B � � M � �
x H@� � 	X�	� ? � � � �^E`cb �u� � 	E� � M � �

The ��� �%	 Problem (j=1)

The solution of the � � � 	 problem is� � � � v j ����� i���i z�� l
� <
� j ����� i��ui q � l

� �! 
� � � 	 <
"#" �� � � v 
 �����C j ����� i��ui z�� l

� < � 
 �����C j ����� i��ui q � l
� <$"#" <
% �

where CC denotes the complex conjugate, % , v and � are functions of the slow
times and

 
� � � 	t� � � = � � H < �

�

 ����� B j �	 �

� z'& � � < �

�

 ����� j

�
,
� � �� � � H j �	 �

� q & � � � � M � �
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The � = � � B
Problem (j=2)

Applying the solvability condition to the � = � � B
problem with

x � x z andx � x q shows that v and � depend only on the slow time � �
�
When

x � x H the

solvability condition yields * % /10 � � ��� H � � v � � < � � � � �
with � H as

� H � 
 �������C � � � < ? 	 � ��C � �H f � � < ?
 ����� f ?� 
 �

����� � 
 � o < ?C 
 ����� � � < � � o
� � � 
 �

�����C f ? � � � < ?
 ����� o � 
 ����� � �HC f C < ? � 0?@< 0 < ? � 0?@< 0 o
� � � 
 ����� � � HC f ? � 0?@< 0 � ? � 0?@< 0 o < � �

C 
 �

����� � �
The solution for the � = � � B

problem is� � ��� Ht� � 	 � � v � � < � � � � � <�� � � � � 	 ��v � ^a`cb ��C � � � H � H < � n
	�	
< � � ^E`cb � C � � � H � H+� � n
	�	�	< � � � � 	 v � ^E`cb ��C � � H � H 	 < � � � � 	 v � ^E`cb � C � � nc	 <$"#"�� �

� � � " H � � v � � < � � � � � <�� " � �Vv � ^E`cb � C � � � H � H < � n
	�	
<
� � ^a`pb � C � � � H � H+� � n
	�	�	<$" � v � ^E`cb ��C � � H � H 	 <
" � v � ^a`cb ��C � � n
	 <
"#"�� �

where the functions � h � � 	 are

� H �
	� � 
 H � ^E`cb � � 	 < 
 H � � ^a`cb � � 	 < � ^E`cb � � 	�	< � 
 H � ^a`cb ��� ?@< 0p	 �� 	 <
"#" 	E� � � �� H � < � 
 H�� ^a`cb ��� ? � 0p	 � � 	 <$"#" 	%� � M �
� � � � � � � ^a`cb ��� ?@< 0 � 	 �� 	 < 
 � � ^E`cb � � 	 < 
 � � ^E`cb ��� ?@< 0 	 � � 	E� � �K� �� � � ^E`cb ��� ? � 0 � 	 � � 	 < 
 � � ^E`cb ��� ? � 0 	 � � 	E� � M �
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� � � � � � � ^a`cb ��� ?@< 0 � 	 �� 	 < 
 � � ^E`cb � � 	 < 
 � � ^E`cb ��� ?@< 0 	 � � 	E� � �K� �� � � ^E`cb ��� ? � 0 � 	 � � 	 < 
 � � ^E`cb ��� ? � 0 	 � � 	E� � M �
� ��� 	� � ��� � ^E`cb ��� ?@< 0 �]	 �� 	 < 
 � � ^E`cb � � 	< � 
 � � ^a`cb ��� ?@< 0p	 �� 	 <
"#" 	E� � � � ���� � ^E`cb ��� ? � 0��m	 � � 	 < � 
 � � ^a`pb ��� ? � 0p	 � � 	 <
"#" 	E� � M �

Here, 0 � � : ?@< ��� � H <�? � � � �c0 � � : ?@< ��� � H and 0�� � : ?@<�? � � �

and the
coefficients � � h � 
 � h and " h are given in the Appendix.

The � = � � B Problem (j=3)

The solvability conditions for the � = � � B problem yield a coupled set of Lan-
dau equations*�v* � �

� � v�� < v � v�� � < v � � � � � * �* � �

� ��� � < � � � � � < v � v�� �
�

(5)

The complex coefficients � � � � � and � are given in the Appendix.

Analysis of the Amplitude Equations

We let the amplitudes v and � of � � , which determines the shape of the front,
be of the form

vr� � � 	X� � � � � 	 ^E`cb � � ��� � � 	�� � � � � 	t��� � � � 	 ^E`cb � � � T � � 	 � (6)

Substituting (6) into (5) and separating real and imaginary parts results in0 �0 � �

� � � � � < � ��� � � < � � � ��� � � 0 �	�0 � �

� � ��� < � � � � � < � � � � � � (7)0
�0 � �

� � � � � < � � � � � < � ��� � � �m� 0 � T0 � �

� � � � < � � � � � < � � � � � �
(8)

Here the subscripts � and
�

represent the real and imaginary parts of the respective
coefficients. In order to determine the steady state solutions of (7), (8) which, in
the original problem, correspond to a superposition of waves traveling along the
front, we consider 0 �
/ 0 � � �60��w/ 0 � � � � � This leads to� = � � � < � ��� � � < � � � � �]B � � ��� = � � � < � ��� � � < � � � � �]B � � � (9)
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There are four critical points� � � � � � � � � � � � � � � ��� 4 � ������� 4 � � ��� � � � � � � � ��� � �
where

� 4 � �u� � � � / � � � 	 ��� � ��� � � �u� � � � / � � ��� < � ��� 	�	 ��� � �
In the case of the first critical point the amplitudes v and � are identically equal to
zero, which corresponds to the uniformly propagating wave in the original prob-
lem. The second and third critical points correspond to waves traveling along the
front, which are right- and left-traveling waves, respectively. The last critical point
corresponds to a standing wave.
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Figure 1. Graphs of � � � (upper curve) and � � � (lower curve) versus the
non-dimensional d]H � 92H � 	� �

It can be shown that for all parameter values � � is positive. Thus, from the ex-
pression for � 4 we conclude that left- and right-traveling wave exist for � M � (the

8



so-called supercritical bifurcation) if � � � ��� and for � ��� (the subcritical bifur-
cation) if � ��� M � . In a similar way, the supercritical bifurcation of standing waves
occurs if � ��� < � � � �6� and subcritical bifurcation occurs if � ��� < � � � M � . All
the subcritical bifurcations are known to produce locally unstable regimes. The
supercritical bifurcation can lead to either stable or unstable solutions depending
on the parameter values. Specifically, the supercritical bifurcation of traveling
waves (which occurs if � ��� � � ) is stable if � ��� � � � � and unstable otherwise.
The supercritical bifurcation of standing waves (which occurs if � ��� < � ��� � � )
is stable if � ��� M � ��� and unstable otherwise.

The quantities � � � and � � � are plotted in Fig. 1 as functions of d H (which
is proportional to the initial concentration of the initiator) for typical parameter
values (3) � \ � �G\ � 	 / � Z [ Q # H 	@� ?�� ��� � and \ � / � Z [ Q # H 	t��� � � � . We set the
wavenumber

� � � � ��� , which is close to the value
� �

at which the neutral stability
curve has a minimum (4). We see that both quantities are negative, which implies
that both traveling and standing waves appear as a result of a supercritical bifur-
cation, and that for the parameter values chosen � ��� M � � � , so that the traveling
waves are stable while the standing waves are unstable. This observation agrees
with the experimental data in (2) where spinning waves have been observed.
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Appendix

The right-hand side of equations (1)-(3) are

�# � � � � � # � � ** � �

� � �

0 ��0 � � � �	� < f * � �* � H � *
� � �* n �

o * � �* �
< * � �* n ** �

� * � �* n 0
��0 � �DC * � �* n �
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�# � � f * � �* � H � *
� � �* n �

o * � �* � < ** � �

� � �

0 ��0 � � � � � < ** � �

� � �

0 ��0 � � � � �
< * � �* n ** � f * � �* n * � �* � �DC * � �* n o < * � �* � �

* � �* �
< C * � �* n ** n

� � �

0 � ��0 � � � * � �* � � < f * � �* � H � *
� � �* n �

o * � �* � �
�Z � � � � �Z � � f * � �* n o

� < * � �* � �
�  � T * � �* � H �

�Z � � C * � �* n * � �* n � * � �* � H f * � �* n o
� < * � �* � �

< * � �* � �

�  � T � f * � �* n o
� < * � �* � H < * � �* � �

� �  � T * � �* � H �
�� � � � � �� � � ��C * � �* � �

� 
 � � � � T 	 � � f * � �* n o
� < f * � �* � H o

� �
�� � � ��C * � �* � �

�3C * � �* � �
< C * � �* � H f * � �* � H < * � �* � �

o �3C 
 � � � T � � T
� 
 � � � � T 	 � � � � � TX� 
 ����� � � T f * � �* n o

� �DC * � �* n * � �* n �
�� � � � � �� � � � � � � � T 	 � � �� ��� C � � � � T � � T < ��� � � � T 	 � �

The coefficients � � h , 
 � h and " � appearing in the expressions for � � � � 	 are


 H � � � � H � 
 H ��� = � � < � � B 
 ����� � � � H < 
 ����� / C 	 � ? � 0 	 q � �

 H � � 
 ����� = � � < � � H B � � HJ� ?@< 0p	 q � �


 H � � � � ?X< � � 	 q � � C � �H � � < � � 
 �

����� / C < � � � � 
 ����� ����� ? � 0 	 
 H � / C<
"#" 	 < ��� ?@< 0 	 
 H � / C <
"#" 	 < � � � 
 H � <$"#" 	 � �
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� H � � 
 H � < 
 H � < 
 H � � 
 H �P� 
 H � �

 � ��� � � � � H < 
 ����� / C 	 � ?@< 0 	 
 ����� / � � 
 � � � � � � H 
 ����� � ? � 0p	 / � �
� � � � � 
 � � ��� 0 < 0 � 	8/ C < � � 	 < 
 � � � 0 � 0 � 	 / C < 
 �

����� � ? � 0 � 	 / ? �� � �H � � � � � 
 �

����� / � � � � � �H 
 ����� / C � � � �H 
 � < � � 
 �

����� / �� 
 �

����� � �H / � � 
 ����� 
 � � 	 � � � � H 	 q � �V� � � �3� � �10 � < C � � H 	 � � � ? � 0 � 	�/ C��� ?@< 
 ����� / � � � H 	 � ?@< 0 � 	�/ C < 
 ����� / � � � H < 
 ����� / C�� � � � q �

" � � � � �H 
 � < � � 
 �

����� / � � 
 �

����� � �H / � � 
 ����� � � � � 
 ����� 
 � � � � � � � H 	 q � �

 � � � " � < 
 �

����� / � � � � � ��� � � < 
 � �+� 
 � � � 
 � � �

 � ��� �+� � ��
 ����� � ?@< 0 	 � � � H < � � ��
 ����� 	X� C 
 � �2�


 � � � �+� � ��
 ����� � � H2� ? � 0p	X� C 
 � � �
� � � � � � � � � 0 � 0 � 	 
 � � < 
 � � � � � � � 0 < 0 � 	 < � � � 
 � � � � � H 	 q � � ?@< C � � H�G� � � � ?t< 0 � 	�	 � � 
 �

����� � 0 � � ? 	�/ � < � � � � � 
 �

����� � � � 
 � � �H �DC � � � �H< � ?@< C � � H � � ? < 0 � 	�/ C 	 � C � �H � 
 � �G� � C ��
 �

����� 	 �G� � � � � 
 �

����� 	 � � � � H 	 q � � /� � 0 � < 
 ����� � ? < C � � H �G� � � � ?t< 0 � 	�	 / � � � H � � � �
" � � �u� 
 ����� � � � � 
 ����� 
 � �P� � � 
 �

����� / C < C � �H 
 � � 
 �

����� � �H / C 	�/ � � � H �

 � � � " � < 
 �

����� / � � 
 � ��� 
 � �2� 
 � � � 
 � � �
� � � � � � � � ?@< 
 ����� / � � � H 	 < 
 � �P� 
 �

����� / � � 
 � �� ��� 
 ����� 
 � �P� � � 
 �

����� / C < C � �H 
 � � 
 �

����� � �H / C 	�/ � � � H �
��� � � � � 
 ����� / C��DC � �H 
 � /�
 ����� < 
 ����� � �H / C � 
 � �P� 
 � � �

� � � � � � � � � ��� 0 � <�? 	 / C < � � 	 � � 
 � � ��� 0 <�? 	8/ C�� � � 	 <
"#" 	< � 
 ��� � ? � 0p	 / C <$"#" 	 < � � 
 �

����� / C �3C � �H � � � � � � �H 
 ����� � � 0 � � ? 	 / C �
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����� / � � 
 � � � 
 ��� < 
 � � < 
 � � � 
 � � � " � < 
 �

����� / �8�
The coefficients in the amplitude equations (5)) are

� � � � HX� � � < 0 	 � 
 ����� � � � < 0 � 
 ����� / C < C � � H / 0 < 
 ����� / ��C 0 	�	 � q � �
� � � � #�� � # � � # �w	 � � � < 0 � 
 ����� / C < C � � H / 0 < 
 ����� / ��C 0 	 � q � �
� � � � #�� � # � � # � 	 � � � < 0 � 
 ����� / C < C � � H / 0 < 
 ����� / C 0 � q � �

#
� < # ��� C � � H " �

& � < � H & � �3� � C ��
 �

����� � � & � < � � ��
 �

����� � � & ���3C 
 ����� � � &��
< C 
 ����� � � " �

&
� < � � � 
 ����� � � � H < � � 	 & � < � � ��
 ����� �u� � � H < � � 	 &�� �

#
� < # � � C � � H " �

& � < � H & � < � � ��
 �

����� � � & � �DC 
 ����� � � &�� < C 
 ����� � � " � & �< � � ��
 ����� � � � H < � � 	 � & � < &�� 	 < � � � 
 ����� ��� � � H < � � 	 &�� �
&

� � C / � ?t< 0p	%�
&

� � � � � H / 0 < � � C � 
 ����� � 0 � ? 	 � ? / 0 �DC / � ?t< 0 	 � �
& � � C � � H / � 0 < 0p	 < � � ��
 ����� � 0 � ? 	 �J? / � 0 < 0p	 � ? / � ?X< 0p	 � �

& � � �+� � � � � H � 0 <�? /10 	 <�? / � 
 ����� � 0 � ? 	 � / � 0 � 0 <�? 	 � �3� � C � 
 ����� � 0 � ? 	%�
& � � � � H � 0 � 0p	 < � � C � 
 ����� � ? � 0p	 < � � H � 0 � <�? 	 / � 0 < 0p	< � � C � 
 ����� � 0 � ? 	 � � ? / � 0 <�? 	 � ? / � 0 < 0 	 � �

& � � �+� � � � 0 � ? 	 � C 
 H � / � 0 <�? 	 � � 
 H � / � 0 <�? 	 � < 
 H � / 0 < C 
 H � / � 0 < 0c	 �< � � � � 0 < ? 	 � C � H � / � 0 <�? 	 < 
 H � / 0 < C 
 H � / � 0 < 0p	 � �
&�� � �+� � � � 0 � ? 	 � C � � � / � 0 < 0 � 	 < C 
 � � / � 0 < ? 	 < 
 � �]/10 �< � � � � 0 < ? 	 � C � � � / � 0 < 0 � 	 < 
 � � / 0 � �
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&�� � �+� � � � 0 � ? 	 � C � � � / � 0 < 0 � 	 < C 
 � � / � 0 < ? 	 < 
 � �]/10 �< � � � � 0 < ? 	 � C � � � / � 0 < 0 � 	 < 
 � � / 0 � �
&�� � �+� � � � 0 � ? 	 � C ��� � / � 0 < 0��w	 < C 
 � � / � 0 <�? 	 < 
 � �m/ 0 < C 
 ���w/ � 0 < 0 	 �< � � � � 0 <�? 	 � C � � � / � 0 < 0 � 	 < 
 � � / 0 < C 
 � � / � 0 < 0p	 � �
# � � � � � < 0p	 / 
 ����� � � � H 
 ����� � H < C � 
 � � H � H �V� 	 < C � �H 
 ����� " �< � � � H 
 ������ � � / � �DC � � 
 ����� " � < ��� 
 � � �H �DC � 
 � � H � � �V� 	 �� � � � � � H ��� � � H < � 
 ����� � H ��� 	 � � 
 ����� � � ��� 	� � � � 
 �

����� 	 < ? ��� " � = � � � �H < � � 
 ����� B < � � H 
 ����� = � � 
 �

����� < � � �H � �
B � / ��3C � � � � H � H � � 	 < C � � � � H � � �V� 	 � ��� � � � �H �

# � � � � � < 0p	 / 
 ����� � C � � H 
 � � � � ��� 	 � � � �V� 	 < � H ��� 	u	 < ��� � �H 
 �< C � �H 
 ����� " � < � � H 
 ����� � H �DC � � 
 ����� " � � � � H 
 ������ � � / C �� � � � � H 
 ����� � � = � H �V� 	 � � � ��� 	 < � � ��� 	 < � � 
 ����� B < ? ��� � � 
 ����� " ��3C � � �H 
 ����� � � �3C � H 
 ������ � � � � � � � H � H <�? � � � � � �H " � � / �< C � � H � � � � � � � 	 � � H ��� 	 � � � �V� 	�	 � ��� � � � �H �
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